Abstract
The Cyber-Physical Systems (CPS) are complex, multi- disciplinary, physically-aware future’s paradigms which are integrating embedded computing technologies (cyber part) into the physical world (physical part). The interaction requirement with the physical world makes the CPS unpredictable because of the real-world’s dynamic behaviours. So a CPS needs to reason these changes and adapt its behaviour accordingly. Moreover, a CPS can cooperate with multiple CPSs to establish cyber-physical system-of-systems (CPSoS). This creates a distributed and heterogeneous environment where we are challenged by unpredictability. To address the challenges of the CPSoS, new methodologies and new approaches need to be developed. One way to tackle these challenges is by making them smart with intelligent agents and modelling them explicitly. To make intelligent decisions it is needed to do reasoning and to use decision-making mechanisms. In this way, they can handle the unpredictable changes encountered both internally and externally. Nevertheless, suitable reasoning, smartness, and awareness mechanisms must be studied, implemented, and applied to achieve smart CPSoS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
National Academies: A 21st Century Cyber-Physical Systems Education. National Academies of Sciences, Engineering, and Medicine. National Academies Press (2017)
Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and analyzing MAPE-K feedback loops for self-adaptation. In: 2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 13–23. IEEE (2015)
Boissier, O., Bordini, R.H., Hubner, J., Ricci, A.: Multi-Agent Oriented Programming: Programming Multi-Agent Systems Using JaCaMo. MIT Press, Cambridge (2020)
Boissier, O., Hübner, J.F., Ricci, A.: The JaCaMo framework. In: Aldewereld, H., Boissier, O., Dignum, V., Noriega, P., Padget, J. (eds.) Social Coordination Frameworks for Social Technical Systems. LGTS, vol. 30, pp. 125–151. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33570-4_7
Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak Using Jason, vol. 8. Wiley, Hoboken (2007)
Calinescu, R., Mirandola, R., Perez-Palacin, D., Weyns, D.: Understanding uncertainty in self-adaptive systems. In: IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), pp. 242–251. IEEE (2020)
Challenger, M., Eslampanaha, R., Karadumanb, B., Denila, J., Vangheluwe, H.: Development of an IoT and WSN based cps using MPM approach: a smart fire detection case study. In: Multi-Paradigm Modelling Approaches for Cyber-Physical Systems, p. 245 (2020)
Challenger, M., Tezel, B.T., Alaca, O.F., Tekinerdogan, B., Kardas, G.: Development of semantic web-enabled BDI multi-agent systems using SEA\_ML: an electronic bartering case study. Appl. Sci. 8(5), 688 (2018)
Challenger, M., Vangheluwe, H.: Towards employing ABM and MAS integrated with MBSE for the lifecycle of sCPSoS. In: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, pp. 1–7 (2020)
Demirkol, S., Getir, S., Challenger, M., Kardas, G.: Development of an agent based e-barter system. In: 2011 International Symposium on Innovations in Intelligent Systems and Applications, pp. 193–198. IEEE (2011)
Horváth, I., Rusák, Z., Li, Y.: Order beyond chaos: introducing the notion of generation to characterize the continuously evolving implementations of cyber-physical systems. In: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection (2017)
Jeschke, S., Brecher, C., Meisen, T., Özdemir, D., Eschert, T.: Industrial internet of things and cyber manufacturing systems. In: Jeschke, S., Brecher, C., Song, H., Rawat, D.B. (eds.) Industrial Internet of Things. SSWT, pp. 3–19. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42559-7_1
Karaduman, B., Challenger, M.: Model-driven development for ESP-based IoT systems. In: 2021 IEEE/ACM 3rd International Workshop on Software Engineering Research and Practices for the IoT (SERP4IoT), pp. 9–12. IEEE (2021)
Karaduman, B., Challenger, M., Eslampanah, R., Denil, J., Vangheluwe, H.: Analyzing WSN-based IoT systems using MDE techniques and petri-net models. In: STAF Workshops, pp. 35–46 (2020)
Karaduman, B., Challenger, M., Eslampanah, R., Denil, J., Vangheluwe, H.: Platform-specific modeling for riot based IoT systems. In: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, pp. 639–646 (2020)
Karaduman, B., Oakes, B.J., Eslampanah, R., Denil, J., Vangheluwe, H., Challenger, M.: An architecture and reference implementation for WSN-based IoT systems. In: Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics, pp. 80–103. IGI Global (2022)
Karaduman, B., Tezel, B.T., Challenger, M.: Towards applying fuzzy systems in intelligent agent-based CPS: a case study. In: 2021 6th International Conference on Computer Science and Engineering (UBMK), pp. 735–740. IEEE (2021)
Kardas, G., Demirezen, Z., Challenger, M.: Towards a DSML for semantic web enabled multi-agent systems. In: Proceedings of the International Workshop on Formalization of Modeling Languages, pp. 1–5 (2010)
Karimpour, N., Karaduman, B., Ural, A., Challenger, M., Dagdeviren, O.: IoT based hand hygiene compliance monitoring. In: 2019 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6. IEEE (2019)
Leitao, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., Colombo, A.W.: Smart agents in industrial cyber-physical systems. Proc. IEEE 104(5), 1086–1101 (2016)
Marah, H.M., Eslampanah, R., Challenger, M.: DSML4TinyOS: code generation for wireless devices. In: 2nd International Workshop on Model-Driven Engineering for the Internet-of-Things (MDE4IoT), 21st International Conference on Model Driven Engineering Languages and Systems, MODELS 2018, Copenhagen, Denmark (2018)
Mascardi, V., et al.: Engineering multi-agent systems: state of affairs and the road ahead. ACM SIGSOFT Softw. Eng. Notes 44(1), 18–28 (2019)
Miranda, T., et al.: Improving the usability of a MAS DSML. In: Weyns, D., Mascardi, V., Ricci, A. (eds.) EMAS 2018. LNCS (LNAI), vol. 11375, pp. 55–75. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25693-7_4
Musil, A., Musil, J., Weyns, D., Bures, T., Muccini, H., Sharaf, M.: Patterns for self-adaptation in cyber-physical systems. In: Biffl, S., Lüder, A., Gerhard, D. (eds.) Multi-Disciplinary Engineering for Cyber-Physical Production Systems, pp. 331–368. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56345-9_13
Özgür, L., Akram, V.K., Challenger, M., Dağdeviren, O.: An IoT based smart thermostat. In: 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE), pp. 252–256. IEEE (2018)
Queiroz, J., Leitão, P., Barbosa, J., Oliveira, E.: Distributing intelligence among cloud, fog and edge in industrial cyber-physical systems. In: 16th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2019, pp. 447–454 (2019)
Rosales, R., Castañón-Puga, M., Lara-Rosano, F., Evans, R.D., Osuna-Millan, N., Flores-Ortiz, M.V.: Modelling the interruption on HCI using BDI agents with the fuzzy perceptions approach: an interactive museum case study in mexico. Appl. Sci. 7(8), 832 (2017)
Schoofs, E., Kisaakye, J., Karaduman, B., Challenger, M.: Software agent-based multi-robot development: a case study. In: 2021 10th Mediterranean Conference on Embedded Computing (MECO), pp. 1–8. IEEE (2021)
Seiger, R., Huber, S., Heisig, P., Aßmann, U.: Toward a framework for self-adaptive workflows in cyber-physical systems. Softw. Syst. Model. 18(2), 1117–1134 (2017). https://doi.org/10.1007/s10270-017-0639-0
Semwal, T., Jha, S.S., Nair, S.B.: Tartarus: A multi-agent platform for bridging the gap between cyber and physical systems. In: Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, pp. 1493–1495 (2016)
Suresh, P., Babar, A., Raj, V.V.: Uncertainty in fault tree analysis: a fuzzy approach. Fuzzy Sets Syst. 83(2), 135–141 (1996)
Tekinerdogan, B., Blouin, D., Vangheluwe, H., Goulão, M., Carreira, P., Amaral, V.: Multi-Paradigm Modelling Approaches for Cyber-Physical Systems. Academic Press (2021)
Tepjit, S., Horváth, I., Rusák, Z.: The state of framework development for implementing reasoning mechanisms in smart cyber-physical systems: a literature review. J. Comput. Des. Eng. 6(4), 527–541 (2019)
Tezel, B.T., Challenger, M., Kardas, G.: A metamodel for Jason BDI agents. In: 5th Symposium on Languages, Applications and Technologies (SLATE 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)
Van Acker, B., Denil, J., Vangheluwe, H., De Meulenaere, P.: Managing heterogeneity in model-based systems engineering of cyber-physical systems. In: 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 617–622. IEEE (2015)
Weyns, D.: Software engineering of self-adaptive systems. In: Cha, S., Taylor, R., Kang, K. (eds.) Handbook of Software Engineering, pp. 399–443. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-00262-6_11
Yalcin, M.M., Karaduman, B., Kardas, G., Challenger, M.: An agent-based cyber-physical production system using Lego technology. In: 2021 16th Conference on Computer Science and Intelligence Systems (FedCSIS), pp. 521–531. IEEE (2021)
Zadeh, L.A.: Fuzzy sets. In: Zadeh, L.A. (ed.) Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers, pp. 394–432. World Scientific (1996)
Zeadally, S., Sanislav, T., Mois, G.D.: Self-adaptation techniques in cyber-physical systems (CPSs). IEEE Access 7, 171126–171139 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Karaduman, B., Challenger, M. (2022). Smart Cyber-Physical System-of-Systems Using Intelligent Agents and MAS. In: Alechina, N., Baldoni, M., Logan, B. (eds) Engineering Multi-Agent Systems. EMAS 2021. Lecture Notes in Computer Science(), vol 13190. Springer, Cham. https://doi.org/10.1007/978-3-030-97457-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-97457-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97456-5
Online ISBN: 978-3-030-97457-2
eBook Packages: Computer ScienceComputer Science (R0)