Abstract
Health is an extremely important aspect in the United Nations Sustainable Development Goals because there is not possible progress for humankind without it. The Covid19 pandemic has evidenced to what extent society can be affected in all its facets when suddenly a phenomenon affects human's health. In this chapter, it is analyzed how computational intelligence techniques have allowed developing different studies about this disease, creating several prediction models and formulating new knowledge about it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alfaro-Amieiro, M., Arias-Careaga, S., Gamba-Romero, A.: Agenda 2030: Claves Para la Transformación Sostenible: Investigación y Debate 256, Jun 2019
Fundación Seminario de Investigación para la Paz. El mundo que queremos: La Agenda 2030 (Estudios para la paz) – 1 oct 2016, (SIP) (2016)
Lorenzo, J.A.S.: El reto de cambiar el mundo: La Agenda 2030 de desarrollo sostenible – 7 dic 2015
Naciones Unidas: Report of the inter-agency and expert group on sustainable development goals indicators. Consejo Económico y Social, E/CN.3/2016/2/Rev.1, 19 de febrero (2016)
ONU: “Resolución A/RES/70/1 Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible”, 25 de noviembre de 2015. [edición electrónica] http://www.un.org/es/comun/docs/?symbol=A/RES/70/1.2015
Hu, Z., Ge, O., Li, S. Jin, L., Xiong, M.: Artificial Intelligence Forecasting of Covid-19 in China (2020). arXiv preprint arXiv:2002.07112
Yan, T., Wong, P.K., Ren, H., Wang, H., Wang, J., Li, Y.: Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest CT scans. Chaos Solitons Fract. 140, 110153 (2020). https://doi.org/10.1016/j.chaos.2020.110153
Cruz-Corona, C.: Soft computing techniques and sustainability science, an introduction. In: Cruz Corona, C. (ed.) Soft Computing for Sustainability Science. Cham: Springer International Publishing, pp. 1–10 (2018)
Di Vaio, A., Palladino, R., Hassan, R., Escobar, O.: Artificial intelligence and business models in the sustainable development goals perspective: a systematic literature review. J. Bus. Res. 121, 283–314 (2020)
Liu, R., Rong, Y., Peng, Z.: A review of medical artificial intelligence. Glob. Health J. 4(2), 42–45 (2020)
Scardoni, A., Balzarini, F., Signorelli, C., Cabitza, F., Odone, A.: Artificial intelligence-based tools to control healthcare associated infections: a systematic review of the literature. J. Infect. Publ. Health 13, 1061–1077 (2020)
Vaishya, R., Javaid, M., Khan, I.H., Haleem, A.: Artificial intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. 14, 337–339 (2020). https://doi.org/10.1016/j.dsx.2020.04.012
Vinod, D.N., Prabaharan, S.R.S.: Data science and the role of Artificial Intelligence in achieving the fast diagnosis of COVID-1. Chaos Solitons Fract. 140, 110182 (2020). https://doi.org/10.1016/j.chaos.2020.110182
Bullock, J., Luccioni, A., Hoffmann-Pham, K., Nga-Lam, C.S., Luengo-Oroz, M.: Mapping the landscape of artificial intelligence applications against Covid-19. United Nations Global Pulse, Durham University, Universite de Montreal, NYU Stern School of Business, World Health Organization, arXiv:2003.11336v1cs.CY. (2020)
Elavarasan, R.M., Pugazhendhi, R.: Restructured society and environment: a review on potential technological strategies to control the COVID-19 pandemic. Sci. Total Environ. 725, 138858 (2020). https://doi.org/10.1016/j.scitotenv.2020.138858
Lalmuanawma, S., Hussain, J., Chhakchhuak, L.: Applications of machine learning and artificial intelligence for COVID-19 (SARS-CoV-2) pandemic: a review. Chaos Solitons Fractals 139, 110059 (2020). https://doi.org/10.1016/j.chaos.2020.110059
Sipior, J.C.: Considerations for development and use of AI in response to COVID-19. Int. J. Inf. Manage. (2020). https://doi.org/10.1016/j.ijinfomgt.2020.102170
Swapnarekha, H., Behera, H.S., Nayak, J., Naik B.: Role of intelligent computing in COVID-19 prognosis: a state-of-the-art review. Chaos, Solitons Fract. 138, 109947 (2020). https://doi.org/10.1016/j.chaos.2020.109947
Shaikh, F., Brun-Andersen, M., Sohail, M.R., Mulero, F., Awan, O., Dupont-Roettger, D., Kubassova, O., Dehmeshki, J., Bisdas, S.: Current landscape of imaging and the potential role for artificial intelligence in the management of COVID-19. Curr. Probl. Diagn. Radiol. 000(1–6), 2020 (2020). https://doi.org/10.1067/j.cpradiol.2020.06.009
Suri, J.S., Puvvula, A., Biswas, M., Majhail, M., Saba, L., Faa, G., Singh, I.M., Oberleitner, R., Turk, M., Chadha, P.S., Johri, A.M., Sanches, J.M., Khanna, N.N., Viskovic, K., Mavrogeni, S., Laird, J.R., Pareek, G., Miner, M., Sobel, D.W., Balestrieri, A., Sfikakis, P.P., Tsoulfas, G., Protogerou, A., Misra, D.P., Agarwal, V., Kitas, G.D., Ahluwalia, P., Kolluri, R., Teji, J., Maini, M.A., Agbakoba, A, Dhanjil, S.K., Sockalingam, M., Saxena, A., Nicolaides, A., Sharma, A., Rathore, V., Ajuluchukwu,, J.N.A., Fatemi, M., Alizad, A., Viswanathan, V., Krishnan, P.K., Naidu, S.: COVID-19 pathways for brain and heart injury in comorbidity patients: a role of medical imaging and artificial intelligence-based COVID-19 severity classification: a review. Comput. Biol. Med. (2020) https://doi.org/10.1016/j.compbiomed.2020.103960
Kaushik, A.C., Raj, U.: AI-driven drug discovery: a boon against COVID-19? AI Open 1, 1–4 (2020). https://doi.org/10.1016/j.aiopen.2020.07.001
Ren, Z., Liao, H., Liu Y.: Generalized Z-numbers with hesitant fuzzy linguistic information and its application to medicine selection for the patients with mild symptoms of the COVID-19. Comput. Indust. Eng. 145, 106517 (2020). https://doi.org/10.1016/j.cie.2020.106517
Ocampo, L., Yamagishi, K.: Modeling the lockdown relaxation protocols of the Philippine government in response to the COVID-19 pandemic: An intuitionistic fuzzy DEMATEL analysis. Socioecon. Plann. Sci. (2020). https://doi.org/10.1016/j.seps.2020.100911
Togacar, M., Ergen, B., Comert, Z.: COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches. Comput. Biol. Med. 121, 103805 (2020). https://doi.org/10.1016/j.compbiomed.2020.103805
Gomes, R.R., Mariani, M.H.D.M., dos Santos, L.: Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables. Chaos, Solitons and Fractals 139, 110027 (2020). https://doi.org/10.1016/j.chaos.2020.110027
Salmeron, J.L., Arevalo, I.A.: Privacy-preserving, distributed and cooperative FCM-based learning approach for cancer research. In: Bello R et al (eds) Proceedings of IJCRS 2020, Lecture Notes in Artificial Intelligence LNAI 12179, pp. 477–487 (2020). https://doi.org/10.1007/978-3-030-52705-1_35
Yao, J., Azam, N.: Web-based medical decision support systems for three-way medical decision making with game-theoretic rough sets. IEEE Trans. Fuzzy Syst. 23(1), 3–15 (2014)
Oyelade, O.N., Ezugwu, A.E.: A case-based reasoning framework for early detection and diagnosis of novel coronavirus. Inform. Med. Unlocked 20100395 (2020). https://doi.org/10.1016/j.imu.2020.100395
Chowell, G., Luo, R., Sun, K., Roosa, K., Tariq, A., Viboud C.: Real-time forecasting of epidemic trajectories using computational dynamic ensembles. Epidemics 30, 100379 (2016). https://doi.org/10.1016/j.epidem.2019.100379
Guo, Q., Li, M., Wang, C., Wang, P., Fang, Z., tan, J., Wu, S., Xiao, Y., Zhu, H.: Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm. bioRxiv (2020). https://doi.org/10.1101/2020.01.21.914044. https://www.biorxiv.org/content/early/2020/02/02/2020.01.21.914044.full.pdf
Mohammed, A.A., Al-qaness, A.A., Ewees, H.F., El Abd El Aziz, M.A.: Optimization method for forecasting confirmed cases of COVID-19 in China. J. Clin. Med. 9(3), 674 (2020)
Mu, T.C., et al.: A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect. Dis. Poverty 9, 24 (2020). https://doi.org/10.1186/s40249-020-00640-3
Viboud, C., Simonsen, L., Chowell, G.: A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics 2016(15), 27–37 (2016)
Magdon-Ismail, M.: Machine Learning the Phenomenology of COVID-19 From Early Infection Dynamics (2020). arXiv: 2003.07602v2
Guoping, Z., et al.: Forecasting and analysis of time variation of parameters of COVID-19 infection in China using an improved SEIR model. In: Public Meteorological Service Center of China Meteorological Administration (2020)
Wu, J.T., Leung, K., Leung, G.M.: Now casting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet. (2020). https://doi.org/10.1016/S0140-6736(20)30260-9
Goodwin, P., Wright, G.: Enhancing strategy evaluation in scenario planning: a role for decision analysis. J. Manage. Stud. 38, 1 (2001)
Sorousha, M., Bahri, P.A.: Hybrid intelligent scenario generator for business strategic planning by using ANFIS. Expert Syst. Appl. 36, 7729–7737 (2009)
Sutcliffe, A.G., Gregoriades, A.: Automating scenario analysis of human and system reliability. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 37(2), 249–261 (2007)
Kosow, H., Gaßner, R.: Methods of future and scenario analysis. In: Overview, Assessment, and Selection Criteria. DIE Research Project “Development Policy: Questions for the Future”, p. 133 (2008). Studies/DeutschesInstitutfürEntwicklungspolitik. ISSN 1860-0468
Chowell, G.: Fitting dynamic models to epidemic outbreaks with quantified uncertainty: a primer for parameter uncertainty, identifiability, and forecasts. Infect. Dis. Model. (2017). https://doi.org/10.1016/j.idm.2017.08.001
Yang, Z.F., et al.: Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J. Thoracic Disease 12(3), 165–174 (2020). https://doi.org/10.21037/jtd.2020.02.64
Hernandez, A.R., Bello García, B., Bello García, M., García Lorenzo, M., Bello Pérez, R.: Análisis de escenario utilizando técnicas de Inteligencia Artificial para estudiar el posible comportamiento de la Covid-19. Revista Anales de la Academia de Ciencia de Cuba 10(2), 831–846 (2020). ISSN: 2304-0106: http://www.revistaccuba.cu/index.php/revacc/article/view/831/846
Li, Y. et al.: Prediction of criticality in patients with severe Covid-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan (2020). preprint doi: https://doi.org/10.1101/2020.02.27.20028027
García-Lorenzo, M., Rodriguez-Alvarez, Y., Ramon-Hernandez, A., Bello García, B., Filiberto, Y., Rosete, A., Caballero, Y., Bello, R.: Adquisición de conocimiento sobre la letalidad de la Covid-19 usando técnicas de Inteligencia Artificial. Revista Anales de la Academia de Ciencia de Cuba. 10(3), 891–912 (2020). ISSN: 2304-0106. Disponible: http://www.revistaccuba.cu/index.php/revacc/article/view/891/912
Caballero, Y., Bello, R., et al.: Knowledge discovery using rough set theory. In: Koronacki, J., Ras, Z.W., Wierzchon, S.T., Kacprzyk, J. (eds.) Advances in Machine Learning I Dedicated to the memory of Professor Ryszard S. Michalski in Series: Studies in Computational Intelligence. ISBN 978-3-642-05176-0. 262, 367–383 (2010)
Bello-García, B. et al.: Implementación de métodos para el pre-procesamiento de datos usando Teoría de los conjuntos aproximados (RST) en Python. Memoria de la Conferencia Internacional de Procesamiento de la Información (CIPI2019), Cuba, ISBN 978-959-312-372-3 (2019)
Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Proces. 73, 1–15 (2018)
Hamsagayathri, P., Sampath, P.: Priority based decision tree classifier for breast cancer detection. In: Advanced Computing and Communication Systems (ICACCS). 2017 4th International Conference. IEEE, pp. 1–6 (2017). https://doi.org/10.1109/ICACCS.2017.8014598
Jhajharia, S., Verma, S., Kumar, R.: A cross-platform evaluation of various decision tree algorithms for prognostic analysis of breast cancer data. In: En Inventive Computation Technologies (ICICT), International Conference, vol. 3, pp. 1–7 (2016). IEEE. https://doi.org/10.1109/INVENTIVE.2016.7830107
Bashir, U., Chachoo, M.A.: Performance evaluation of J48 and Bayes algorithms for intrusion detection system. Int. J. Netw. Secur. Appl. 9, 01–11 (2017)
Augasta, M.G., Kathirvalavakumar, T.: Reverse engineering the neural networks for rule extraction in classification problems. Neural Process. Lett. 35(2), 131–150 (2012)
Bello-García, M., García-Lorenzo, M.M., Bello, R.: A method for building prototypes in the nearest prototype approach based on similarity relations for problems of function approximation. Lectures Notes on Computer Sciences 7629 (2012)
Filiberto, Y., et al.: An analysis about the measure quality of similarity and its applications in machine learning. In: Fourth International Workshop on Knowledge Discovery, Knowledge Management and Decision Support. Atlantis Press (2013)
Rodríguez, Y., et al.: Similar prototype methods for class imbalanced data classification. In: Uncertainty Management with Fuzzy and Rough Sets. Springer, pp. 193–209 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Bello, R., García, M.M., Caballero, Y., Rosete, A., Rodríguez, Y. (2022). Applications of Computational Intelligence in the Studies of Covid-19. In: Verdegay, J.L., Brito, J., Cruz, C. (eds) Computational Intelligence Methodologies Applied to Sustainable Development Goals. Studies in Computational Intelligence, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-030-97344-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-97344-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97343-8
Online ISBN: 978-3-030-97344-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)