[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Applications of Computational Intelligence in the Studies of Covid-19

  • Chapter
  • First Online:
Computational Intelligence Methodologies Applied to Sustainable Development Goals

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1036))

  • 230 Accesses

Abstract

Health is an extremely important aspect in the United Nations Sustainable Development Goals because there is not possible progress for humankind without it. The Covid19 pandemic has evidenced to what extent society can be affected in all its facets when suddenly a phenomenon affects human's health. In this chapter, it is analyzed how computational intelligence techniques have allowed developing different studies about this disease, creating several prediction models and formulating new knowledge about it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alfaro-Amieiro, M., Arias-Careaga, S., Gamba-Romero, A.: Agenda 2030: Claves Para la Transformación Sostenible: Investigación y Debate 256, Jun 2019

    Google Scholar 

  2. Fundación Seminario de Investigación para la Paz. El mundo que queremos: La Agenda 2030 (Estudios para la paz) – 1 oct 2016, (SIP) (2016)

    Google Scholar 

  3. Lorenzo, J.A.S.: El reto de cambiar el mundo: La Agenda 2030 de desarrollo sostenible – 7 dic 2015

    Google Scholar 

  4. Naciones Unidas: Report of the inter-agency and expert group on sustainable development goals indicators. Consejo Económico y Social, E/CN.3/2016/2/Rev.1, 19 de febrero (2016)

    Google Scholar 

  5. ONU: “Resolución A/RES/70/1 Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible”, 25 de noviembre de 2015. [edición electrónica] http://www.un.org/es/comun/docs/?symbol=A/RES/70/1.2015

  6. Hu, Z., Ge, O., Li, S. Jin, L., Xiong, M.: Artificial Intelligence Forecasting of Covid-19 in China (2020). arXiv preprint arXiv:2002.07112

  7. Yan, T., Wong, P.K., Ren, H., Wang, H., Wang, J., Li, Y.: Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest CT scans. Chaos Solitons Fract. 140, 110153 (2020). https://doi.org/10.1016/j.chaos.2020.110153

  8. Cruz-Corona, C.: Soft computing techniques and sustainability science, an introduction. In: Cruz Corona, C. (ed.) Soft Computing for Sustainability Science. Cham: Springer International Publishing, pp. 1–10 (2018)

    Google Scholar 

  9. Di Vaio, A., Palladino, R., Hassan, R., Escobar, O.: Artificial intelligence and business models in the sustainable development goals perspective: a systematic literature review. J. Bus. Res. 121, 283–314 (2020)

    Google Scholar 

  10. Liu, R., Rong, Y., Peng, Z.: A review of medical artificial intelligence. Glob. Health J. 4(2), 42–45 (2020)

    Google Scholar 

  11. Scardoni, A., Balzarini, F., Signorelli, C., Cabitza, F., Odone, A.: Artificial intelligence-based tools to control healthcare associated infections: a systematic review of the literature. J. Infect. Publ. Health 13, 1061–1077 (2020)

    Google Scholar 

  12. Vaishya, R., Javaid, M., Khan, I.H., Haleem, A.: Artificial intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. 14, 337–339 (2020). https://doi.org/10.1016/j.dsx.2020.04.012

    Article  Google Scholar 

  13. Vinod, D.N., Prabaharan, S.R.S.: Data science and the role of Artificial Intelligence in achieving the fast diagnosis of COVID-1. Chaos Solitons Fract. 140, 110182 (2020). https://doi.org/10.1016/j.chaos.2020.110182

  14. Bullock, J., Luccioni, A., Hoffmann-Pham, K., Nga-Lam, C.S., Luengo-Oroz, M.: Mapping the landscape of artificial intelligence applications against Covid-19. United Nations Global Pulse, Durham University, Universite de Montreal, NYU Stern School of Business, World Health Organization, arXiv:2003.11336v1cs.CY. (2020)

  15. Elavarasan, R.M., Pugazhendhi, R.: Restructured society and environment: a review on potential technological strategies to control the COVID-19 pandemic. Sci. Total Environ. 725, 138858 (2020). https://doi.org/10.1016/j.scitotenv.2020.138858

  16. Lalmuanawma, S., Hussain, J., Chhakchhuak, L.: Applications of machine learning and artificial intelligence for COVID-19 (SARS-CoV-2) pandemic: a review. Chaos Solitons Fractals 139, 110059 (2020). https://doi.org/10.1016/j.chaos.2020.110059

  17. Sipior, J.C.: Considerations for development and use of AI in response to COVID-19. Int. J. Inf. Manage. (2020). https://doi.org/10.1016/j.ijinfomgt.2020.102170

    Article  Google Scholar 

  18. Swapnarekha, H., Behera, H.S., Nayak, J., Naik B.: Role of intelligent computing in COVID-19 prognosis: a state-of-the-art review. Chaos, Solitons Fract. 138, 109947 (2020). https://doi.org/10.1016/j.chaos.2020.109947

  19. Shaikh, F., Brun-Andersen, M., Sohail, M.R., Mulero, F., Awan, O., Dupont-Roettger, D., Kubassova, O., Dehmeshki, J., Bisdas, S.: Current landscape of imaging and the potential role for artificial intelligence in the management of COVID-19. Curr. Probl. Diagn. Radiol. 000(1–6), 2020 (2020). https://doi.org/10.1067/j.cpradiol.2020.06.009

    Article  Google Scholar 

  20. Suri, J.S., Puvvula, A., Biswas, M., Majhail, M., Saba, L., Faa, G., Singh, I.M., Oberleitner, R., Turk, M., Chadha, P.S., Johri, A.M., Sanches, J.M., Khanna, N.N., Viskovic, K., Mavrogeni, S., Laird, J.R., Pareek, G., Miner, M., Sobel, D.W., Balestrieri, A., Sfikakis, P.P., Tsoulfas, G., Protogerou, A., Misra, D.P., Agarwal, V., Kitas, G.D., Ahluwalia, P., Kolluri, R., Teji, J., Maini, M.A., Agbakoba, A, Dhanjil, S.K., Sockalingam, M., Saxena, A., Nicolaides, A., Sharma, A., Rathore, V., Ajuluchukwu,, J.N.A., Fatemi, M., Alizad, A., Viswanathan, V., Krishnan, P.K., Naidu, S.: COVID-19 pathways for brain and heart injury in comorbidity patients: a role of medical imaging and artificial intelligence-based COVID-19 severity classification: a review. Comput. Biol. Med. (2020) https://doi.org/10.1016/j.compbiomed.2020.103960

  21. Kaushik, A.C., Raj, U.: AI-driven drug discovery: a boon against COVID-19? AI Open 1, 1–4 (2020). https://doi.org/10.1016/j.aiopen.2020.07.001

    Article  Google Scholar 

  22. Ren, Z., Liao, H., Liu Y.: Generalized Z-numbers with hesitant fuzzy linguistic information and its application to medicine selection for the patients with mild symptoms of the COVID-19. Comput. Indust. Eng. 145, 106517 (2020). https://doi.org/10.1016/j.cie.2020.106517

  23. Ocampo, L., Yamagishi, K.: Modeling the lockdown relaxation protocols of the Philippine government in response to the COVID-19 pandemic: An intuitionistic fuzzy DEMATEL analysis. Socioecon. Plann. Sci. (2020). https://doi.org/10.1016/j.seps.2020.100911

    Article  Google Scholar 

  24. Togacar, M., Ergen, B., Comert, Z.: COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches. Comput. Biol. Med. 121, 103805 (2020). https://doi.org/10.1016/j.compbiomed.2020.103805

  25. Gomes, R.R., Mariani, M.H.D.M., dos Santos, L.: Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables. Chaos, Solitons and Fractals 139, 110027 (2020). https://doi.org/10.1016/j.chaos.2020.110027

  26. Salmeron, J.L., Arevalo, I.A.: Privacy-preserving, distributed and cooperative FCM-based learning approach for cancer research. In: Bello R et al (eds) Proceedings of IJCRS 2020, Lecture Notes in Artificial Intelligence LNAI 12179, pp. 477–487 (2020). https://doi.org/10.1007/978-3-030-52705-1_35

  27. Yao, J., Azam, N.: Web-based medical decision support systems for three-way medical decision making with game-theoretic rough sets. IEEE Trans. Fuzzy Syst. 23(1), 3–15 (2014)

    Article  Google Scholar 

  28. Oyelade, O.N., Ezugwu, A.E.: A case-based reasoning framework for early detection and diagnosis of novel coronavirus. Inform. Med. Unlocked 20100395 (2020). https://doi.org/10.1016/j.imu.2020.100395

  29. Chowell, G., Luo, R., Sun, K., Roosa, K., Tariq, A., Viboud C.: Real-time forecasting of epidemic trajectories using computational dynamic ensembles. Epidemics 30, 100379 (2016). https://doi.org/10.1016/j.epidem.2019.100379

  30. Guo, Q., Li, M., Wang, C., Wang, P., Fang, Z., tan, J., Wu, S., Xiao, Y., Zhu, H.: Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm. bioRxiv (2020). https://doi.org/10.1101/2020.01.21.914044. https://www.biorxiv.org/content/early/2020/02/02/2020.01.21.914044.full.pdf

  31. Mohammed, A.A., Al-qaness, A.A., Ewees, H.F., El Abd El Aziz, M.A.: Optimization method for forecasting confirmed cases of COVID-19 in China. J. Clin. Med. 9(3), 674 (2020)

    Google Scholar 

  32. Mu, T.C., et al.: A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect. Dis. Poverty 9, 24 (2020). https://doi.org/10.1186/s40249-020-00640-3

    Article  Google Scholar 

  33. Viboud, C., Simonsen, L., Chowell, G.: A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics 2016(15), 27–37 (2016)

    Article  Google Scholar 

  34. Magdon-Ismail, M.: Machine Learning the Phenomenology of COVID-19 From Early Infection Dynamics (2020). arXiv: 2003.07602v2

    Google Scholar 

  35. Guoping, Z., et al.: Forecasting and analysis of time variation of parameters of COVID-19 infection in China using an improved SEIR model. In: Public Meteorological Service Center of China Meteorological Administration (2020)

    Google Scholar 

  36. Wu, J.T., Leung, K., Leung, G.M.: Now casting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet. (2020). https://doi.org/10.1016/S0140-6736(20)30260-9

  37. Goodwin, P., Wright, G.: Enhancing strategy evaluation in scenario planning: a role for decision analysis. J. Manage. Stud. 38, 1 (2001)

    Article  Google Scholar 

  38. Sorousha, M., Bahri, P.A.: Hybrid intelligent scenario generator for business strategic planning by using ANFIS. Expert Syst. Appl. 36, 7729–7737 (2009)

    Article  Google Scholar 

  39. Sutcliffe, A.G., Gregoriades, A.: Automating scenario analysis of human and system reliability. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 37(2), 249–261 (2007)

    Google Scholar 

  40. Kosow, H., Gaßner, R.: Methods of future and scenario analysis. In: Overview, Assessment, and Selection Criteria. DIE Research Project “Development Policy: Questions for the Future”, p. 133 (2008). Studies/DeutschesInstitutfürEntwicklungspolitik. ISSN 1860-0468

    Google Scholar 

  41. Chowell, G.: Fitting dynamic models to epidemic outbreaks with quantified uncertainty: a primer for parameter uncertainty, identifiability, and forecasts. Infect. Dis. Model. (2017). https://doi.org/10.1016/j.idm.2017.08.001

    Article  Google Scholar 

  42. Yang, Z.F., et al.: Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J. Thoracic Disease 12(3), 165–174 (2020). https://doi.org/10.21037/jtd.2020.02.64

  43. Hernandez, A.R., Bello García, B., Bello García, M., García Lorenzo, M., Bello Pérez, R.: Análisis de escenario utilizando técnicas de Inteligencia Artificial para estudiar el posible comportamiento de la Covid-19. Revista Anales de la Academia de Ciencia de Cuba 10(2), 831–846 (2020). ISSN: 2304-0106: http://www.revistaccuba.cu/index.php/revacc/article/view/831/846

  44. Li, Y. et al.: Prediction of criticality in patients with severe Covid-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan (2020). preprint doi: https://doi.org/10.1101/2020.02.27.20028027

  45. García-Lorenzo, M., Rodriguez-Alvarez, Y., Ramon-Hernandez, A., Bello García, B., Filiberto, Y., Rosete, A., Caballero, Y., Bello, R.: Adquisición de conocimiento sobre la letalidad de la Covid-19 usando técnicas de Inteligencia Artificial. Revista Anales de la Academia de Ciencia de Cuba. 10(3), 891–912 (2020). ISSN: 2304-0106. Disponible: http://www.revistaccuba.cu/index.php/revacc/article/view/891/912

  46. Caballero, Y., Bello, R., et al.: Knowledge discovery using rough set theory. In: Koronacki, J., Ras, Z.W., Wierzchon, S.T., Kacprzyk, J. (eds.) Advances in Machine Learning I Dedicated to the memory of Professor Ryszard S. Michalski in Series: Studies in Computational Intelligence. ISBN 978-3-642-05176-0. 262, 367–383 (2010)

    Google Scholar 

  47. Bello-García, B. et al.: Implementación de métodos para el pre-procesamiento de datos usando Teoría de los conjuntos aproximados (RST) en Python. Memoria de la Conferencia Internacional de Procesamiento de la Información (CIPI2019), Cuba, ISBN 978-959-312-372-3 (2019)

    Google Scholar 

  48. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Proces. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  49. Hamsagayathri, P., Sampath, P.: Priority based decision tree classifier for breast cancer detection. In: Advanced Computing and Communication Systems (ICACCS). 2017 4th International Conference. IEEE, pp. 1–6 (2017). https://doi.org/10.1109/ICACCS.2017.8014598

  50. Jhajharia, S., Verma, S., Kumar, R.: A cross-platform evaluation of various decision tree algorithms for prognostic analysis of breast cancer data. In: En Inventive Computation Technologies (ICICT), International Conference, vol. 3, pp. 1–7 (2016). IEEE. https://doi.org/10.1109/INVENTIVE.2016.7830107

  51. Bashir, U., Chachoo, M.A.: Performance evaluation of J48 and Bayes algorithms for intrusion detection system. Int. J. Netw. Secur. Appl. 9, 01–11 (2017)

    Google Scholar 

  52. Augasta, M.G., Kathirvalavakumar, T.: Reverse engineering the neural networks for rule extraction in classification problems. Neural Process. Lett. 35(2), 131–150 (2012)

    Article  Google Scholar 

  53. Bello-García, M., García-Lorenzo, M.M., Bello, R.: A method for building prototypes in the nearest prototype approach based on similarity relations for problems of function approximation. Lectures Notes on Computer Sciences 7629 (2012)

    Google Scholar 

  54. Filiberto, Y., et al.: An analysis about the measure quality of similarity and its applications in machine learning. In: Fourth International Workshop on Knowledge Discovery, Knowledge Management and Decision Support. Atlantis Press (2013)

    Google Scholar 

  55. Rodríguez, Y., et al.: Similar prototype methods for class imbalanced data classification. In: Uncertainty Management with Fuzzy and Rough Sets. Springer, pp. 193–209 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Rosete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bello, R., García, M.M., Caballero, Y., Rosete, A., Rodríguez, Y. (2022). Applications of Computational Intelligence in the Studies of Covid-19. In: Verdegay, J.L., Brito, J., Cruz, C. (eds) Computational Intelligence Methodologies Applied to Sustainable Development Goals. Studies in Computational Intelligence, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-030-97344-5_5

Download citation

Publish with us

Policies and ethics