[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

AutoSeg - Steering the Inductive Biases for Automatic Pathology Segmentation

  • Conference paper
  • First Online:
Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis (MICCAI 2021)

Abstract

In medical imaging, un-, semi-, or self-supervised pathology detection is often approached with anomaly- or out-of-distribution detection methods, whose inductive biases are not intentionally directed towards detecting pathologies, and are therefore sub-optimal for this task. To tackle this problem, we propose AutoSeg, an engine that can generate diverse artificial anomalies that resemble the properties of real-world pathologies. Our method can accurately segment unseen artificial anomalies and outperforms existing methods for pathology detection on a challenging real-world dataset of Chest X-ray images. We experimentally evaluate our method on the Medical Out-of-Distribution Analysis Challenge 2021 (Code available under: https://github.com/FeliMe/autoseg).

G. Kaissis and D. Rueckert—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atlason, H.E., Love, A., Sigurdsson, S., Gudnason, V., Ellingsen, L.M.: Unsupervised brain lesion segmentation from MRI using a convolutional autoencoder. In: Medical Imaging 2019: Image Processing, March 2019. https://doi.org/10.1117/12.2512953

  2. Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Med. Image Anal. 69, 101952 (2021)

    Article  Google Scholar 

  3. Buda, M., Saha, A., Mazurowski, M.A.: Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Comput. Biol. Med. 109, 218–225 (2019). https://doi.org/10.1016/j.compbiomed.2019.05.002

    Article  Google Scholar 

  4. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization (2019)

    Google Scholar 

  5. Meissen, F., Kaissis, G., Rueckert, D.: Challenging current semi-supervised anomaly segmentation methods for brain MRI (2021)

    Google Scholar 

  6. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  7. Perslev, M., Dam, E.B., Pai, A., Igel, C.: One network to segment them all: a general, lightweight system for accurate 3D medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 30–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_4

    Chapter  Google Scholar 

  8. Petersen, J., et al.: Medical out-of-distribution analysis challenge, March 2021. https://doi.org/10.5281/zenodo.4573948

  9. Pinaya, W.H.L., et al.: Unsupervised brain anomaly detection and segmentation with transformers (2021)

    Google Scholar 

  10. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019). https://doi.org/10.1016/j.media.2019.01.010

    Article  Google Scholar 

  11. Smith, K., et al.: Data from CT colonography. The cancer imaging archive (2015). https://doi.org/10.7937/K9/TCIA.2015.NWTESAY1

  12. Sun, D., et al.: Autoflow: learning a better training set for optical flow. In: CVPR (2021)

    Google Scholar 

  13. Tan, J., Hou, B., Batten, J., Qiu, H., Kainz, B.: Detecting outliers with foreign patch interpolation (2020)

    Google Scholar 

  14. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013)

    Article  Google Scholar 

  15. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray: hospital-scale chest X-ray database and benchmarks on weakly supervised classification and localization of common thorax diseases. In: Lu, L., Wang, X., Carneiro, G., Yang, L. (eds.) Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. ACVPR, pp. 369–392. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13969-8_18

    Chapter  Google Scholar 

  16. Wood, E., et al.: Fake it till you make it: face analysis in the wild using synthetic data alone (2021)

    Google Scholar 

  17. Zimmerer, D., Isensee, F., Petersen, J., Kohl, S., Maier-Hein, K.: Unsupervised anomaly localization using variational auto-encoders. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 289–297. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_32

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Meissen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meissen, F., Kaissis, G., Rueckert, D. (2022). AutoSeg - Steering the Inductive Biases for Automatic Pathology Segmentation. In: Aubreville, M., Zimmerer, D., Heinrich, M. (eds) Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis. MICCAI 2021. Lecture Notes in Computer Science(), vol 13166. Springer, Cham. https://doi.org/10.1007/978-3-030-97281-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97281-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97280-6

  • Online ISBN: 978-3-030-97281-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics