[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

ECLIPSE: Enhanced Compiling Method for Pedersen-Committed zkSNARK Engines

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2022 (PKC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13177))

Included in the following conference series:

Abstract

We advance the state-of-the art for zero-knowledge commit-and-prove SNARKs (CP-SNARKs). CP-SNARKs are an important class of SNARKs which, using commitments as “glue”, allow to efficiently combine proof systems—e.g., general-purpose SNARKs (an efficient way to prove statements about circuits) and \(\varSigma \)-protocols (an efficient way to prove statements about group operations). Thus, CP-SNARKs allow to efficiently provide zero-knowledge proofs for composite statements such as \(h=H(g^{x})\) for some hash-function H.

Our main contribution is providing the first construction of CP-SNARKs where the proof size is succinct in the number of commitments.

We achieve our result by providing a general technique to compile Algebraic Holographic Proofs (AHP) (an underlying abstraction used in many modern SNARKs) with special “decomposition” properties into an efficient CP-SNARK. We then show that some of the most efficient AHP constructions—Marlin, PLONK, and Sonic—satisfy our compilation requirements.

Our resulting SNARKs achieve universal and updatable reference strings, which are highly desirable features as they greatly reduce the trust needed in the SNARK setup phase.

Full version available at [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The service can afford to wait for \(\ell \) orders depending on the application, and the expected throughput and time-to-service of the application. As an example, the ID-Layer in Concordium [28] orders may be even serviced each epoch.

  2. 2.

    The reason why we apply our compiler to all three proof systems is that Marlin, PLONK and Sonic are a sort of rock-paper-scissor for AHPs (the first can outperform the second, which can outperform the third, which can in turn outperform the first). This is because they use different models of computations, and therefore it may be possible to prove some statements more efficiently with one system rather than the others.

  3. 3.

    While there are approaches that mitigate this problem [1, 22, 43], they are curve-dependent—hindering generality and interoperability—and still relatively expensive (at 4–6 constraints per curve operation).

  4. 4.

    While it is also necessary to prove \(w_\mathsf {com}(X)\) only maps to \((w_i)_{i\in I_\mathsf {com}}\), this is trivially achieved by knowledge soundness of the \(\varSigma \)-protocol.

  5. 5.

    We use proof and argument as synonymous in this paper, as we are only interested in computational soundness.

  6. 6.

    More formally, if the underlying AHP is \((\mathsf {b}+1,\mathsf {C})\)-zero knowledge, where \(\mathsf {b}\) is the maximum number of queries made by the verifier to polynomials, one can retain ZK of the resulting SNARK by compiling AHP via PCS with somewhat hiding security, a weaker notion of hiding [20]. Because the deterministic KZG is already somewhat hiding and every WCP in \(\mathsf {AHP}_\textsf {PLONK} \) is queried once, it suffices to add \(v_\mathbb {H}\) multiplied by a masking polynomial of degree 1 to tolerate 2 openings (i.e., one evaluation and one commitment).

References

  1. What is Jubjub? https://z.cash/technology/jubjub

  2. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for composite statements. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 643–673. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_22

    Chapter  Google Scholar 

  3. Aranha, D.F., Bennedsen, E.M., Campanelli, M., Ganesh, C., Orlandi, C., Takahashi, A.: ECLIPSE: enhanced compiling method for Pedersen-committed zkSNARK engines. Cryptology ePrint Archive, Report 2021/934

    Google Scholar 

  4. Attema, T., Cramer, R.: Compressed \(\varsigma \)-protocol theory and practical application to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 513–543. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_18

  5. Attema, T., Cramer, R., Fehr, S.: Compressing proofs of \(k\)-out-of-\(n\) partial knowledge. Cryptology ePrint Archive, Report 2020/753

    Google Scholar 

  6. Attema, T., Cramer, R., Kohl, L.: A compressed \(\sigma \)-protocol theory for lattices. Cryptology ePrint Archive, Report 2021/307

    Google Scholar 

  7. Attema, T., Cramer, R., Rambaud, M.: Compressed \(\sigma \)-protocols for bilinear group arithmetic circuits and applications. Cryptology ePrint Archive, Report 2020/1447

    Google Scholar 

  8. Backes, M., Hanzlik, L., Herzberg, A., Kate, A., Pryvalov, I.: Efficient non-interactive zero-knowledge proofs in cross-domains without trusted setup. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp. 286–313. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_10

    Chapter  Google Scholar 

  9. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer Society Press (2014)

    Google Scholar 

  10. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_6

    Chapter  MATH  Google Scholar 

  11. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a von Neumann architecture. In: USENIX Security 2014, pp. 781–796. USENIX Association (2014)

    Google Scholar 

  12. Benarroch, D., et al.: Proposal: commit-and-prove zero-knowledge proof systems and extensions. In: 4th ZKProof Workshop (2021)

    Google Scholar 

  13. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_18

    Chapter  Google Scholar 

  14. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Efficient polynomial commitment schemes for multiple points and polynomials. Cryptology ePrint Archive, Report 2020/081

    Google Scholar 

  15. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

    Chapter  MATH  Google Scholar 

  16. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK parameters in the random beacon model. Cryptology ePrint Archive, Report 2017/1050

    Google Scholar 

  17. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society Press (2014)

    Google Scholar 

  18. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24

    Chapter  Google Scholar 

  19. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

    Chapter  Google Scholar 

  20. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: a toolbox for more efficient universal and updatable zkSNARKs and commit-and-prove extensions. Cryptology ePrint Archive, Report 2020/1069

    Google Scholar 

  21. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and composition of succinct zero-knowledge proofs. In: ACM CCS 2019, pp. 2075–2092. ACM Press (2019)

    Google Scholar 

  22. Campanelli, M., Hall-Andersen, M.: Veksel: simple, efficient, anonymous payments with large anonymity sets from well-studied assumptions. Cryptology ePrint Archive, Report 2020/1069

    Google Scholar 

  23. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: ACM CCS 2017, pp. 1825–1842. ACM Press (2017)

    Google Scholar 

  24. Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic and non-algebraic statements with applications to privacy preserving credentials. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_18

    Chapter  Google Scholar 

  25. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26

    Chapter  Google Scholar 

  26. Costello, C., et al.: Geppetto: versatile verifiable computation. In: 2015 IEEE Symposium on Security and Privacy, pp. 253–270. IEEE Computer Society Press (2015)

    Google Scholar 

  27. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19

    Chapter  Google Scholar 

  28. Damgård, I., Ganesh, C., Khoshakhlagh, H., Orlandi, C., Siniscalchi, L.: Balancing privacy and accountability in blockchain identity management. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 552–576. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75539-3_23

    Chapter  MATH  Google Scholar 

  29. Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Parno, B.: Cinderella: turning shabby X.509 certificates into elegant anonymous credentials with the magic of verifiable computation. In: 2016 IEEE Symposium on Security and Privacy, pp. 235–254. IEEE Computer Society Press (2016)

    Google Scholar 

  30. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  31. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

    Chapter  Google Scholar 

  32. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryptology ePrint Archive, Report 2019/953

    Google Scholar 

  33. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37

    Chapter  Google Scholar 

  34. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean circuits. In: USENIX Security 2016, pp. 1069–1083. USENIX Association (2016)

    Google Scholar 

  35. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press (1985)

    Google Scholar 

  36. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19

    Chapter  Google Scholar 

  37. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

    Chapter  Google Scholar 

  38. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference strings with applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_24

    Chapter  Google Scholar 

  39. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_11

    Chapter  Google Scholar 

  40. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: Twenty-Second Annual IEEE Conference on Computational Complexity (CCC’07), pp. 278–291. IEEE (2007)

    Google Scholar 

  41. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits: how to prove non-algebraic statements efficiently. In: ACM CCS 2013, pp. 955–966. ACM Press (2013)

    Google Scholar 

  42. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11

    Chapter  Google Scholar 

  43. Kosba, A., et al.: How to use SNARKs in universally composable protocols. Cryptology ePrint Archive, Report 2015/1093

    Google Scholar 

  44. Lee, J., Choi, J., Kim, J., Oh, H.: SAVER: SNARK-friendly, additively-homomorphic, and verifiable encryption and decryption with rerandomization. Cryptology ePrint Archive, Report 2019/1270

    Google Scholar 

  45. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10

    Chapter  Google Scholar 

  46. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_3

    Chapter  Google Scholar 

  47. Lipmaa, H.: Prover-efficient commit-and-prove zero-knowledge SNARKs. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 185–206. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31517-1_10

    Chapter  Google Scholar 

  48. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge SNARKs from linear-size universal and updatable structured reference strings. In: ACM CCS 2019, pp. 2111–2128. ACM Press (2019)

    Google Scholar 

  49. Maxwell, G.: Confidential transactions. https://people.xiph.org/greg/confidential values.txt

  50. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252. IEEE Computer Society Press (2013)

    Google Scholar 

  51. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22

    Chapter  Google Scholar 

  52. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25

    Chapter  Google Scholar 

  53. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Privacy, pp. 926–943. IEEE Computer Society Press (2018)

    Google Scholar 

  54. Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero knowledge proof system. In: USENIX Security 2018, pp. 675–692. USENIX Association (20108)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for Sean Bowe, Ben Fisch, Ariel Gabizon, and Mary Maller for clarifying the details of their works. We thank the anonymous reviewers of PKC 2022 for helpful comments. This work has been supported by: the Concordium Blockchain Research Center, Aarhus University, Denmark; the Carlsberg Foundation under the Semper Ardens Research Project CF18-112 (BCM); the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme under grant agreement No 803096 (SPEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego F. Aranha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aranha, D.F., Bennedsen, E.M., Campanelli, M., Ganesh, C., Orlandi, C., Takahashi, A. (2022). ECLIPSE: Enhanced Compiling Method for Pedersen-Committed zkSNARK Engines. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds) Public-Key Cryptography – PKC 2022. PKC 2022. Lecture Notes in Computer Science(), vol 13177. Springer, Cham. https://doi.org/10.1007/978-3-030-97121-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97121-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97120-5

  • Online ISBN: 978-3-030-97121-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics