Abstract
An event-based looming objects detection algorithm for asynchronous event-based cameras is presented. The algorithm is fast and accurate both in the detecting the correct number of objects as well as whether the objects are looming.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barranco, F., Fermüller, C., Ros, E.: Real-time clustering and multi-target tracking using event-based sensors. CoRR abs/1807.02851 (2018). http://arxiv.org/abs/1807.02851
Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000). https://github.com/opencv/opencv/wiki/CiteOpenCV
Duda, R., Hart, P., Stork, D.: Pattern classification, 2nd edn. Wiley-Interscience (2000)
Fülöp, T., Zarándy, A.: Bio-inspired looming object detector algorithm on the eye-RIS focal plane-processor system. In: 2010 12th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), pp. 1–5. IEEE (2010)
Fülöp, T., Zarándy, A.: Bio-inspired looming direction detection method. In: 2012 13th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), pp. 1–6. IEEE (2012)
Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2020). https://doi.org/10.1109/TPAMI.2020.3008413
Gil-Jiménez, P., Gómez-Moreno, H., López-Sastre, R., Bermejillo-Martín-Romo, A.: Estimating the focus of expansion in a video sequence using the trajectories of interest points. Image Vis. Comput. 50, 14–26 (2016)
Goutte, C., Toft, P., Rostrup, E., Nielsen, F., Hansen, L.: On clustering FMRI time series. NeuroImage 9(3), 298–310 (1999). https://doi.org/10.1006/nimg.1998.0391. http://www.sciencedirect.com/science/article/pii/S1053811998903913
Hartigan, J., Wong, M.: Algorithm as 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)
Ketchen, D., Shook, C.: The application of cluster analysis in strategic management research: an analysis and critique. Strateg. Manag. J. 17(6), 441–458 (1996)
Li, X., Wang, K., Wang, W., Li, Y.: A multiple object tracking method using Kalman filter. In: The 2010 IEEE International Conference on Information and Automation, pp. 1862–1866, June 2010. https://doi.org/10.1109/ICINFA.2010.5512258
Lichtsteiner, P., Posch, C., Delbruck, T.: A \(128 \times 128\)\(120\)\(db\)\(15\)\(\mu \)s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43(2), 566–576 (2008)
Linares-Barranco, A., Gómez-Rodríguez, F., Villanueva, V., Longinotti, L., Delbrück, T.: A USB3.0 FPGA event-based filtering and tracking framework for dynamic vision sensors. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2417–2420, May 2015. https://doi.org/10.1109/ISCAS.2015.7169172
Pantilie, C., Nedevschi, S.: Real-time obstacle detection in complex scenarios using dense stereo vision and optical flow. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 439–444. IEEE (2010)
Park, S.S., Sowmya, A.: Autonomous robot navigation by active visual motion analysis and understanding. In: Proceedings of IAPR Workshop on Machine Vision Applications (1998)
Powers, D.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation (2011)
Ridwan, I., Cheng, H.: An event-based optical flow algorithm for dynamic vision sensors. In: Karray, F., Campilho, A., Cheriet, F. (eds.) ICIAR 2017. LNCS, vol. 10317, pp. 182–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59876-5_21
Rind, F., Simmons, P.: Seeing what is coming: building collision-sensitive neurones. Trends Neurosci. 22(5), 215–220 (1999)
Satopaa, V., Albrecht, J., Irwin, D., Raghavan, B.: Finding a “kneedle” in a haystack: detecting knee points in system behavior. In: 2011 31st International Conference on Distributed Computing Systems Workshops, pp. 166–171, June 2011. https://doi.org/10.1109/ICDCSW.2011.20
Subbarao, M.: Bounds on time-to-collision and rotational component from first-order derivatives of image flow. Comput. Vis. Graph. Image Process. 50(3), 329–341 (1990)
Thorndike, R.: Who belongs in the family? Psychometrika 18(4), 267–276 (1953). https://doi.org/10.1007/BF02289263
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Kamranian, B., Cheng, H. (2022). Event-Based Looming Objects Detection. In: Rozinaj, G., Vargic, R. (eds) Systems, Signals and Image Processing. IWSSIP 2021. Communications in Computer and Information Science, vol 1527. Springer, Cham. https://doi.org/10.1007/978-3-030-96878-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-96878-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96877-9
Online ISBN: 978-3-030-96878-6
eBook Packages: Computer ScienceComputer Science (R0)