[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Event-Based Looming Objects Detection

  • Conference paper
  • First Online:
Systems, Signals and Image Processing (IWSSIP 2021)

Abstract

An event-based looming objects detection algorithm for asynchronous event-based cameras is presented. The algorithm is fast and accurate both in the detecting the correct number of objects as well as whether the objects are looming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barranco, F., Fermüller, C., Ros, E.: Real-time clustering and multi-target tracking using event-based sensors. CoRR abs/1807.02851 (2018). http://arxiv.org/abs/1807.02851

  2. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000). https://github.com/opencv/opencv/wiki/CiteOpenCV

  3. Duda, R., Hart, P., Stork, D.: Pattern classification, 2nd edn. Wiley-Interscience (2000)

    Google Scholar 

  4. Fülöp, T., Zarándy, A.: Bio-inspired looming object detector algorithm on the eye-RIS focal plane-processor system. In: 2010 12th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), pp. 1–5. IEEE (2010)

    Google Scholar 

  5. Fülöp, T., Zarándy, A.: Bio-inspired looming direction detection method. In: 2012 13th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), pp. 1–6. IEEE (2012)

    Google Scholar 

  6. Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2020). https://doi.org/10.1109/TPAMI.2020.3008413

  7. Gil-Jiménez, P., Gómez-Moreno, H., López-Sastre, R., Bermejillo-Martín-Romo, A.: Estimating the focus of expansion in a video sequence using the trajectories of interest points. Image Vis. Comput. 50, 14–26 (2016)

    Article  Google Scholar 

  8. Goutte, C., Toft, P., Rostrup, E., Nielsen, F., Hansen, L.: On clustering FMRI time series. NeuroImage 9(3), 298–310 (1999). https://doi.org/10.1006/nimg.1998.0391. http://www.sciencedirect.com/science/article/pii/S1053811998903913

  9. Hartigan, J., Wong, M.: Algorithm as 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    MATH  Google Scholar 

  10. Ketchen, D., Shook, C.: The application of cluster analysis in strategic management research: an analysis and critique. Strateg. Manag. J. 17(6), 441–458 (1996)

    Article  Google Scholar 

  11. Li, X., Wang, K., Wang, W., Li, Y.: A multiple object tracking method using Kalman filter. In: The 2010 IEEE International Conference on Information and Automation, pp. 1862–1866, June 2010. https://doi.org/10.1109/ICINFA.2010.5512258

  12. Lichtsteiner, P., Posch, C., Delbruck, T.: A \(128 \times 128\)\(120\)\(db\)\(15\)\(\mu \)s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43(2), 566–576 (2008)

    Article  Google Scholar 

  13. Linares-Barranco, A., Gómez-Rodríguez, F., Villanueva, V., Longinotti, L., Delbrück, T.: A USB3.0 FPGA event-based filtering and tracking framework for dynamic vision sensors. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2417–2420, May 2015. https://doi.org/10.1109/ISCAS.2015.7169172

  14. Pantilie, C., Nedevschi, S.: Real-time obstacle detection in complex scenarios using dense stereo vision and optical flow. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 439–444. IEEE (2010)

    Google Scholar 

  15. Park, S.S., Sowmya, A.: Autonomous robot navigation by active visual motion analysis and understanding. In: Proceedings of IAPR Workshop on Machine Vision Applications (1998)

    Google Scholar 

  16. Powers, D.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation (2011)

    Google Scholar 

  17. Ridwan, I., Cheng, H.: An event-based optical flow algorithm for dynamic vision sensors. In: Karray, F., Campilho, A., Cheriet, F. (eds.) ICIAR 2017. LNCS, vol. 10317, pp. 182–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59876-5_21

    Chapter  Google Scholar 

  18. Rind, F., Simmons, P.: Seeing what is coming: building collision-sensitive neurones. Trends Neurosci. 22(5), 215–220 (1999)

    Article  Google Scholar 

  19. Satopaa, V., Albrecht, J., Irwin, D., Raghavan, B.: Finding a “kneedle” in a haystack: detecting knee points in system behavior. In: 2011 31st International Conference on Distributed Computing Systems Workshops, pp. 166–171, June 2011. https://doi.org/10.1109/ICDCSW.2011.20

  20. Subbarao, M.: Bounds on time-to-collision and rotational component from first-order derivatives of image flow. Comput. Vis. Graph. Image Process. 50(3), 329–341 (1990)

    Article  Google Scholar 

  21. Thorndike, R.: Who belongs in the family? Psychometrika 18(4), 267–276 (1953). https://doi.org/10.1007/BF02289263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamranian, B., Cheng, H. (2022). Event-Based Looming Objects Detection. In: Rozinaj, G., Vargic, R. (eds) Systems, Signals and Image Processing. IWSSIP 2021. Communications in Computer and Information Science, vol 1527. Springer, Cham. https://doi.org/10.1007/978-3-030-96878-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96878-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96877-9

  • Online ISBN: 978-3-030-96878-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics