[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Open-Source Big Data Platform for Real-Time Geolocation in Smart Cities

  • Conference paper
  • First Online:
Smart Cities (ICSC-Cities 2021)

Abstract

Nowadays, big data analytic tools and Internet of Things applications boost productivity in Intelligent Transportation Systems in the context of smart cities. Each day, location mobility data are generated continuously from Global Positioning System devices in a high temporal granularity. This article introduces a framework for public transportation mobility analysis. The proposed big data platform uses open source components for real-time geolocation tracking processing. The platform collects location information over Message Queue Telemetry Transport protocol to Apache Kafka, and then information is processed using Apache Storm, which guarantees fault tolerance, horizontal scalability, and low latency. Experimental evaluation is performed for a case study considering 10357 taxi tours (17 million GPS timestamps) using problem instances of different sizes. Results demonstrate that the proposed open-source big data platform is capable of processing a significantly large number of GPS timestamps of tested instances in reasonable execution times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alam, M., Ferreira, J., Fonseca, J.: Introduction to intelligent transportation systems. In: Alam, M., Ferreira, J., Fonseca, J. (eds.) Intelligent Transportation Systems. SSDC, vol. 52, pp. 1–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28183-4_1

    Chapter  Google Scholar 

  2. Batty, M., et al.: Smart cities of the future. Eur. Phys. J. Spec. Top. 214, 481–518 (2012). https://doi.org/10.1140/epjst/e2012-01703-3

    Article  Google Scholar 

  3. Campos, S., et al.: Big data in road transport and mobility research. In: Intelligent Vehicles, pp. 175–205. Butterworth-Heinemann (2018)

    Google Scholar 

  4. Ding, W., Zhang, S., Zhao, Z.: A collaborative calculation on real-time stream in smart cities. Simul. Model. Pract. Theory 73, 72–82 (2017)

    Article  Google Scholar 

  5. Fabbiani, E., Nesmachnow, S., Toutouh, J., Tchernykh, A., Avetisyan, A., Radchenko, G.: Analysis of mobility patterns for public transportation and bus stops relocation. Program. Comput. Softw. 44(6), 508–525 (2018). https://doi.org/10.1134/S0361768819010031

    Article  Google Scholar 

  6. Fan, T., Jen, H., Chia, T., Yao, Y., Han, C., Li, C.: Congestion prediction with big data for real-time highway traffic. IEEE Access 6, 57311–57323 (2018)

    Article  Google Scholar 

  7. Winter, H., Serra, J., Nesmachnow, S., Tchernykh, A., Shepelev, V.: Computational intelligence for analysis of traffic data. In: Nesmachnow, S., Hernández Callejo, L. (eds.) ICSC-CITIES 2020. CCIS, vol. 1359, pp. 167–182. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69136-3_12

    Chapter  Google Scholar 

  8. Hipogrosso, S., Nesmachnow, S.: Analysis of sustainable public transportation and mobility recommendations for Montevideo and Parque Rodó neighborhood. Smart Cities 3(2), 479–510 (2020)

    Article  Google Scholar 

  9. Jain, A.: Mastering Apache Storm: Processing Big Data Streams in Real Time. Packt Publishing, Birmingham (2017)

    Google Scholar 

  10. Kumar, M., Singh, C.: Building Data Streaming Applications with Apache Kafka. Packt Publishing, Birmingham (2017)

    Google Scholar 

  11. Kumar, S., Tiwari, P., Zymbler, M.: Internet of Things is a revolutionary approach for future technology enhancement: a review. J. Big Data 6(1), 1–21 (2019)

    Article  Google Scholar 

  12. Laska, M., Herle, S., Klamma, R., Blankenbach, J.: A scalable architecture for real-time stream processing of spatiotemporal IoT stream data-performance analysis on the example of map matching. ISPRS Int. J. Geo-Inf. 7(7), 238 (2018)

    Article  Google Scholar 

  13. Li, W., Batty, M., Goodchild, M.: Real-time GIS for smart cities. Int. J. Geogr. Inf. Sci. 34(2), 311–324 (2020)

    Article  Google Scholar 

  14. Massobrio, R., Nesmachnow, S.: Urban mobility data analysis for public transportation systems: a case study in Montevideo, Uruguay. Appl. Sci. 10(16), 5400 (2020)

    Article  Google Scholar 

  15. Nesmachnow, S., Baña, S., Massobrio, R.: A distributed platform for big data analysis in smart cities: combining intelligent transportation systems and socioeconomic data for Montevideo, Uruguay. EAI Endorsed Trans. Smart Cities 2(5), 320–347 (2017)

    Article  Google Scholar 

  16. Nesmachnow, S., Iturriaga, S.: Cluster-UY: collaborative scientific high performance computing in Uruguay. In: Torres, M., Klapp, J. (eds.) ISUM 2019. CCIS, vol. 1151, pp. 188–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-38043-4_16

    Chapter  Google Scholar 

  17. Nesmachnow, S., Muraña, J., Goñi, G., Massobrio, R., Tchernykh, A.: Evolutionary approach for bus synchronization. In: Crespo-Mariño, J.L., Meneses-Rojas, E. (eds.) CARLA 2019. CCIS, vol. 1087, pp. 320–336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41005-6_22

    Chapter  Google Scholar 

  18. Nesmachnow, S., Risso, C.: Exact and evolutionary algorithms for synchronization of public transportation timetables considering extended transfer zones. Appl. Sci. 11(15), 7138 (2021)

    Article  Google Scholar 

  19. Rodrigue, J.: The Geography of Transport Systems. Routledge, London (2020)

    Book  Google Scholar 

  20. Sharma, N., Shamkuwar, M.: Big data analysis in cloud and machine learning. In: Mittal, M., Balas, V.E., Goyal, L.M., Kumar, R. (eds.) Big Data Processing Using Spark in Cloud. SBD, vol. 43, pp. 51–85. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0550-4_3

    Chapter  Google Scholar 

  21. Targio, I., et al.: The role of big data in smart city. Int. J. Inf. Manag. 36(5), 748–758 (2016)

    Article  Google Scholar 

  22. Wang, F., Hu, L., Zhou, D., Sun, R., Hu, J., Zhao, K.: Estimating online vacancies in real-time road traffic monitoring with traffic sensor data stream. Ad Hoc Netw. 35, 3–13 (2015)

    Article  Google Scholar 

  23. Widhalm, P., Yang, Y., Ulm, M., Athavale, S., González, M.C.: Discovering urban activity patterns in cell phone data. Transportation 42(4), 597–623 (2015). https://doi.org/10.1007/s11116-015-9598-x

    Article  Google Scholar 

  24. Winter, H., Serra, J., Nesmachnow, S., Tchernykh, A., Shepelev, V.: Computational intelligence for analysis of traffic data. In: Smart Cities, pp. 167–182 (2021)

    Google Scholar 

  25. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, pp. 316–324. Association for Computing Machinery, New York (2011)

    Google Scholar 

  26. Zhou, L., Chen, N., Chen, Z.: Efficient streaming mass spatio-temporal vehicle data access in urban sensor networks based on Apache Storm. Sensors 17(4), 815 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Moreno-Bernal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moreno-Bernal, P., Cervantes-Salazar, C.A., Nesmachnow, S., Hurtado-Ramírez, J.M., Hernández-Aguilar, J.A. (2022). Open-Source Big Data Platform for Real-Time Geolocation in Smart Cities. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-Cities 2021. Communications in Computer and Information Science, vol 1555. Springer, Cham. https://doi.org/10.1007/978-3-030-96753-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96753-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96752-9

  • Online ISBN: 978-3-030-96753-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics