Abstract
Nowadays, big data analytic tools and Internet of Things applications boost productivity in Intelligent Transportation Systems in the context of smart cities. Each day, location mobility data are generated continuously from Global Positioning System devices in a high temporal granularity. This article introduces a framework for public transportation mobility analysis. The proposed big data platform uses open source components for real-time geolocation tracking processing. The platform collects location information over Message Queue Telemetry Transport protocol to Apache Kafka, and then information is processed using Apache Storm, which guarantees fault tolerance, horizontal scalability, and low latency. Experimental evaluation is performed for a case study considering 10357 taxi tours (17 million GPS timestamps) using problem instances of different sizes. Results demonstrate that the proposed open-source big data platform is capable of processing a significantly large number of GPS timestamps of tested instances in reasonable execution times.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alam, M., Ferreira, J., Fonseca, J.: Introduction to intelligent transportation systems. In: Alam, M., Ferreira, J., Fonseca, J. (eds.) Intelligent Transportation Systems. SSDC, vol. 52, pp. 1–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28183-4_1
Batty, M., et al.: Smart cities of the future. Eur. Phys. J. Spec. Top. 214, 481–518 (2012). https://doi.org/10.1140/epjst/e2012-01703-3
Campos, S., et al.: Big data in road transport and mobility research. In: Intelligent Vehicles, pp. 175–205. Butterworth-Heinemann (2018)
Ding, W., Zhang, S., Zhao, Z.: A collaborative calculation on real-time stream in smart cities. Simul. Model. Pract. Theory 73, 72–82 (2017)
Fabbiani, E., Nesmachnow, S., Toutouh, J., Tchernykh, A., Avetisyan, A., Radchenko, G.: Analysis of mobility patterns for public transportation and bus stops relocation. Program. Comput. Softw. 44(6), 508–525 (2018). https://doi.org/10.1134/S0361768819010031
Fan, T., Jen, H., Chia, T., Yao, Y., Han, C., Li, C.: Congestion prediction with big data for real-time highway traffic. IEEE Access 6, 57311–57323 (2018)
Winter, H., Serra, J., Nesmachnow, S., Tchernykh, A., Shepelev, V.: Computational intelligence for analysis of traffic data. In: Nesmachnow, S., Hernández Callejo, L. (eds.) ICSC-CITIES 2020. CCIS, vol. 1359, pp. 167–182. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69136-3_12
Hipogrosso, S., Nesmachnow, S.: Analysis of sustainable public transportation and mobility recommendations for Montevideo and Parque Rodó neighborhood. Smart Cities 3(2), 479–510 (2020)
Jain, A.: Mastering Apache Storm: Processing Big Data Streams in Real Time. Packt Publishing, Birmingham (2017)
Kumar, M., Singh, C.: Building Data Streaming Applications with Apache Kafka. Packt Publishing, Birmingham (2017)
Kumar, S., Tiwari, P., Zymbler, M.: Internet of Things is a revolutionary approach for future technology enhancement: a review. J. Big Data 6(1), 1–21 (2019)
Laska, M., Herle, S., Klamma, R., Blankenbach, J.: A scalable architecture for real-time stream processing of spatiotemporal IoT stream data-performance analysis on the example of map matching. ISPRS Int. J. Geo-Inf. 7(7), 238 (2018)
Li, W., Batty, M., Goodchild, M.: Real-time GIS for smart cities. Int. J. Geogr. Inf. Sci. 34(2), 311–324 (2020)
Massobrio, R., Nesmachnow, S.: Urban mobility data analysis for public transportation systems: a case study in Montevideo, Uruguay. Appl. Sci. 10(16), 5400 (2020)
Nesmachnow, S., Baña, S., Massobrio, R.: A distributed platform for big data analysis in smart cities: combining intelligent transportation systems and socioeconomic data for Montevideo, Uruguay. EAI Endorsed Trans. Smart Cities 2(5), 320–347 (2017)
Nesmachnow, S., Iturriaga, S.: Cluster-UY: collaborative scientific high performance computing in Uruguay. In: Torres, M., Klapp, J. (eds.) ISUM 2019. CCIS, vol. 1151, pp. 188–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-38043-4_16
Nesmachnow, S., Muraña, J., Goñi, G., Massobrio, R., Tchernykh, A.: Evolutionary approach for bus synchronization. In: Crespo-Mariño, J.L., Meneses-Rojas, E. (eds.) CARLA 2019. CCIS, vol. 1087, pp. 320–336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41005-6_22
Nesmachnow, S., Risso, C.: Exact and evolutionary algorithms for synchronization of public transportation timetables considering extended transfer zones. Appl. Sci. 11(15), 7138 (2021)
Rodrigue, J.: The Geography of Transport Systems. Routledge, London (2020)
Sharma, N., Shamkuwar, M.: Big data analysis in cloud and machine learning. In: Mittal, M., Balas, V.E., Goyal, L.M., Kumar, R. (eds.) Big Data Processing Using Spark in Cloud. SBD, vol. 43, pp. 51–85. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0550-4_3
Targio, I., et al.: The role of big data in smart city. Int. J. Inf. Manag. 36(5), 748–758 (2016)
Wang, F., Hu, L., Zhou, D., Sun, R., Hu, J., Zhao, K.: Estimating online vacancies in real-time road traffic monitoring with traffic sensor data stream. Ad Hoc Netw. 35, 3–13 (2015)
Widhalm, P., Yang, Y., Ulm, M., Athavale, S., González, M.C.: Discovering urban activity patterns in cell phone data. Transportation 42(4), 597–623 (2015). https://doi.org/10.1007/s11116-015-9598-x
Winter, H., Serra, J., Nesmachnow, S., Tchernykh, A., Shepelev, V.: Computational intelligence for analysis of traffic data. In: Smart Cities, pp. 167–182 (2021)
Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, pp. 316–324. Association for Computing Machinery, New York (2011)
Zhou, L., Chen, N., Chen, Z.: Efficient streaming mass spatio-temporal vehicle data access in urban sensor networks based on Apache Storm. Sensors 17(4), 815 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Moreno-Bernal, P., Cervantes-Salazar, C.A., Nesmachnow, S., Hurtado-Ramírez, J.M., Hernández-Aguilar, J.A. (2022). Open-Source Big Data Platform for Real-Time Geolocation in Smart Cities. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-Cities 2021. Communications in Computer and Information Science, vol 1555. Springer, Cham. https://doi.org/10.1007/978-3-030-96753-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-96753-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96752-9
Online ISBN: 978-3-030-96753-6
eBook Packages: Computer ScienceComputer Science (R0)