[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Expanding Opportunities for Array Privatization in Sparse Computations

  • Conference paper
  • First Online:
Languages and Compilers for Parallel Computing (LCPC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13149))

  • 401 Accesses

Abstract

Sparse computation, where sparse formats are used to compress nonzero values of big data, are commonly used in real world applications. However, the compiler-based data dependence analysis of sparse computations needed for automatic parallelization is difficult due to usage of indirect memory accesses through index arrays, e.g. col in val[col[j]], in these computations. One use of such data dependence analysis is to find opportunities for array privatization, which is an approach to increase available parallelism in a loop by providing each parallel thread its own copy of arrays where in each iteration the array reads are dominated by array writes in the same iteration. In this paper, we expand opportunities for compile-time array privatization in sparse computations by using newly formulated index array properties and a novel concept we call content-based privatization. Furthermore, we discuss existing opportunities to use our approach for detecting private arrays in existing library implementations of sparse computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on throughput-oriented processors. In: SC 2009: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, pp. 1–11. ACM, New York (2009)

    Google Scholar 

  2. Byun, J.H., Lin, R., Yelick, K.A., Demmel, J.: Autotuning sparse matrix-vector multiplication for multicore. Technical report, UCB/EECS-2012-215, November 2012

    Google Scholar 

  3. Cheshmi, K., Kamil, S., Strout, M.M., Dehnavi, M.M.: Sympiler: Transforming sparse matrix codes by decoupling symbolic analysis. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2017, pp. 13:1–13:13. ACM, New York (2017). https://doi.org/10.1145/3126908.3126936, http://doi.acm.org/10.1145/3126908.3126936

  4. Davis, T., Hager, W., Duff, I.: Suitesparse (2014). http://faculty.cse.tamu.edu/davis/suitesparse.html

  5. Lin, Y., Padua, D.: Compiler analysis of irregular memory accesses. In: Proceedings of the 21st Conference on Programming Language Design and Implementation, PLDI 2000, pp. 157–168 (2000). https://doi.org/10.1145/349299.349322

  6. Lin, Y., Padua, D.: Compiler analysis of irregular memory accesses. In: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation, vol. 35, pp. 157–168. ACM, New York, May 2000

    Google Scholar 

  7. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating dimensions with review text. In: Proceedings of the 7th ACM Conference on Recommender Systems, RecSys 2013, pp. 165–172. ACM, New York (2013). https://doi.org/10.1145/2507157.2507163, http://doi.acm.org/10.1145/2507157.2507163

  8. Mohammadi, M.S., Cheshmi, K., Dehnavi, M.M., Venkat, A., Yuki, T., Strout, M.M.: Extending Index-array properties for data dependence analysis. In: Hall, M., Sundar, H. (eds.) LCPC 2018. LNCS, vol. 11882, pp. 78–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34627-0_7

    Chapter  Google Scholar 

  9. Mohammadi, M.S., et al.: Sparse computation data dependence simplification for efficient compiler-generated inspectors. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, pp. 594–609. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3314221.3314646

  10. Oancea, C.E., Rauchwerger, L.: Logical inference techniques for loop parallelization. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2012, pp. 509–520. ACM, New York (2012)

    Google Scholar 

  11. Padua, D.A., Wolfe, M.J.: Advanced compiler optimizations for supercomputers. Commun. ACM 29(12), 1184–1201 (1986)

    Article  Google Scholar 

  12. Paek, Y., Hoeflinger, J., Padua, D.: Efficient and precise array access analysis. ACM Trans. Program. Lang. Syst. 24(1), 65–109 (2002)

    Article  Google Scholar 

  13. Park, J., Smelyanskiy, M., Sundaram, N., Dubey, P.: Sparsifying synchronization for high-performance shared-memory sparse triangular solver. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp. 124–140. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07518-1_8

    Chapter  Google Scholar 

  14. Park, J., et al.: Efficient shared-memory implementation of high-performance conjugate gradient benchmark and its application to unstructured matrices. In: Proceedings of International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2014, pp. 945–955. IEEE Press, Piscataway (2014)

    Google Scholar 

  15. Pugh, B., Wonnacott, D.: Nonlinear array dependence analysis. Technical report CS-TR-3372, Department of Computer Science, University of Maryland, November 1994

    Google Scholar 

  16. Pugh, W., Wonnacott, D.: Constraint-based array dependence analysis. ACM Trans. Program. Lang. Syst. 20(3), 635–678 (1998)

    Article  Google Scholar 

  17. Rauchwerger, L., Padua, D.: The privatizing DOALL test: a run-time technique for DOALL loop identification and array privatization. In: Proceedings of the 8th International Conference on Supercomputing. ICS 1994, pp. 33–43. Association for Computing Machinery, New York (1994). https://doi.org/10.1145/181181.181254

  18. Rauchwerger, L., Padua, D.A.: The LRPD test: speculative run-time parallelization of loops with privatization and reduction parallelization. IEEE Trans. Parallel Distrib. Syst. 10(2), 160–180 (1999). https://doi.org/10.1109/71.752782

    Article  Google Scholar 

  19. Rennich, S.C., Stosic, D., Davis, T.A.: Accelerating sparse Cholesky factorization on GPUs. Parallel Comput. 59, 140–150 (2016)

    Article  MathSciNet  Google Scholar 

  20. Rus, S., Hoeflinger, J., Rauchwerger, L.: Hybrid analysis: static & dynamic memory reference analysis. Int. J. Parallel Program. 31(4), 251–283 (2003)

    Article  Google Scholar 

  21. Rus, S.V.: Hybrid analysis of memory references and its application to automatic parallelization. Ph.D. thesis, Texas A&M (2006)

    Google Scholar 

  22. Tu, P., Padua, D.: Automatic array privatization. In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D. (eds.) LCPC 1993. LNCS, vol. 768, pp. 500–521. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57659-2_29

    Chapter  Google Scholar 

  23. Wang, E., et al.: Intel math kernel library. In: Wang, E., et al. (eds.) High-Performance Computing on the Intel® Xeon Phi™, pp. 167–188. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06486-4_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Mills Strout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohammadi, M.S., Hall, M., Strout, M.M. (2022). Expanding Opportunities for Array Privatization in Sparse Computations. In: Chapman, B., Moreira, J. (eds) Languages and Compilers for Parallel Computing. LCPC 2020. Lecture Notes in Computer Science(), vol 13149. Springer, Cham. https://doi.org/10.1007/978-3-030-95953-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95953-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95952-4

  • Online ISBN: 978-3-030-95953-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics