Abstract
When people try to understand nuanced language they typically process multiple input sensor modalities to complete this cognitive task. It turns out the human brain has even a specialized neuron formation, called sagittal stratum, to help us understand sarcasm. We use this biological formation as the inspiration for designing a neural network architecture that combines predictions of different models on the same text to construct accurate and computationally efficient classifiers for sentiment analysis and study several different realizations. Among them, we propose a systematic new approach to combining multiple predictions based on a dedicated neural network and develop mathematical analysis of it along with state-of-the-art experimental results. We also propose a heuristic-hybrid technique for combining models and back it up with experimental results on a representative benchmark dataset and comparisons to other methods (DISCLAIMER: This paper is not subject to copyright in the United States. Commercial products are identified in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the identified products are necessarily the best available for the purpose.) to show the advantages of the new approaches.
We thank the NIST Information Technology Laboratory (ITL) for the research funding and support.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Reprinted from [6] with permission by Springer Nature, order #4841991468054.
References
Maas, A.: Large movie review dataset (2011). http://ai.stanford.edu/~amaas/data/sentiment/
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
Brants, T., Popat, A.C., Xu, P., Och, F.J., Dean, J.: Large language models in machine translation. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (Prague), pp. 858–867 (June 2007)
Breiman, L.: Stacked regressions. Mach. Learn. 24(1), 49–64 (1996)
Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 31(2), 102–107 (2016)
Di Carlo, D.T., et al.: Microsurgical anatomy of the sagittal stratum. Acta Neurochir. 161(11), 2319–2327 (2019). https://doi.org/10.1007/s00701-019-04019-8
Cer, D., et al.: Universal sentence encoder (2018)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Chomsky, N.: Center for brains minds + machines, research meeting: language and evolution (May 2017). https://youtu.be/kFR0LW002ig
Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167 (2008)
Conneau, A., Kiela, D., Schwenk, H., Barraul, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data. In: Proceedings of the 2017 Conference on Emprical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September, pp. 670–680. Association of Computational Linguistics (2017). https://arxiv.org/abs/1705.02364v5
D’Amour, A., et al.: Underspecification presents challenges for credibility in modern machine learning. Preprint arXiv:2011.03395 (2020)
Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech recognition and related applications: an overview. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8599–8603 (2013)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805v2 (2019)
Google Brain Team: Open source library for ML models (2020). https://www.tensorflow.org/
Graves, A., Wayne, G., Danihelka, I.: Neural Turing Machines. arXiv preprint arXiv:1410.5401 (2014)
Heaven, W.D.: The way we train AI is fundamentally flawed. MIT Technol. Rev., November 2020. https://www.technologyreview.com/2020/11/18/1012234/training-machine-learning-broken-real-world-heath-nlp-computer-vision/
Hoang, M., Bihorac, O.A.: Supervised learning of universal sentence representations from natural language inference data. In: Proceedings of the 22nd Nordic Conference on Computational Linguistics (NoDaLiDa), Turku, Finland, 30 September–2 October, pp. 187–196. Linköping University Electronic Press (2019)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146 (2018)
Keras Documentation: IMDB movie reviews sentiment classification (2018). https://keras.io/datasets/
Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)
Kumar, A., Kim, J., Lyndon, D., Fulham, M., Feng, D.: An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J. Biomed. Health Inform. 21(1), 31–40 (2017)
LeBlanc, M., Tibshirani, R.: Combining estimates in regression and classification. J. Am. Stat. Assoc. 91(436), 1641–1650 (1996)
Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)
Magerman, D.M.: Learning grammatical structure using statistical decision-trees. In: Miclet, L., de la Higuera, C. (eds.) ICGI 1996. LNCS, vol. 1147, pp. 1–21. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0033339
Màrquez, L., Rodríguez, H.: Part-of-speech tagging using decision trees. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 25–36. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026668
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013). https://arxiv.org/abs/1310.4546
Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., Gao, J.: Deep learning based text classification: a comprehensive review (2020)
Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Int. Res. 11(1), 169–198 (1999)
Paul, R., Hall, L., Goldgof, D., Schabath, M., Gillies, R.: Predicting nodule malignancy using a CNN ensemble approach. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)
Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014). http://www.aclweb.org/anthology/D14-1162
Perez, F., Avila, S., Valle, E.: Solo or ensemble? Choosing a CNN architecture for melanoma classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)
Pexman, P.M.: How do we understand sarcasm? Front. Young Mind. 6(56), 1–8 (2018). https://doi.org/10.3389/frym.2018.00056
Savelli, B., Bria, A., Molinara, M., Marrocco, C., Tortorella, F.: A multi-context CNN ensemble for small lesion detection. Artif. Intell. Med. 103, 101749 (2020). https://doi.org/10.1016/j.artmed.2019.101749. http://www.sciencedirect.com/science/article/pii/S0933365719303082
Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Sig. Process. 45(11), 2673–2681 (1997)
Sun, C., Huang, L., Qiu, X.: Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 380–385. Association for Computational Linguistics (June 2019). https://doi.org/10.18653/v1/N19-1035. https://www.aclweb.org/anthology/N19-1035
Turing, A.M.: I. - Computing machinery and intelligence. Mind LIX(236), 433–460 (1950). https://doi.org/10.1093/mind/LIX.236.433
Vassilev, A.: BowTie - a deep learning feedforward neural network for sentiment analysis. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds.) LOD 2019. LNCS, vol. 11943, pp. 360–371. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37599-7_30
Voelker, A.R., Kajić, I., Eliasmith, C.: Legendre memory units: Continuous-time representation in recurrent neural networks. In: Advances in Neural Information Processing Systems (2019). https://papers.nips.cc/paper/9689-legendre-memory-units-continuous-time-representation-in-recurrent-neural-networks
Wolfram Neural Net Repository: BookCorpus dataset (2019). https://resources.wolframcloud.com/NeuralNetRepository/resources/BERT-Trained-on-BookCorpus-and-English-Wikipedia-Data
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, pp. 5753–5763 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply
About this paper
Cite this paper
Vassilev, A., Hasan, M., Jin, H. (2022). Can You Tell? SSNet - A Biologically-Inspired Neural Network Framework for Sentiment Classifiers. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13163. Springer, Cham. https://doi.org/10.1007/978-3-030-95467-3_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-95467-3_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95466-6
Online ISBN: 978-3-030-95467-3
eBook Packages: Computer ScienceComputer Science (R0)