[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Full Rotation Hyper-ellipsoid Multivariate Adaptive Bandwidth Kernel Density Estimator

  • Conference paper
  • First Online:
Artificial Intelligence Research (SACAIR 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1551))

Included in the following conference series:

  • 930 Accesses

Abstract

Adaptive bandwidth kernel density estimators (AB-KDEs) have received attention from the academic community due to an analytical promise of increased performance over classical estimators. However, the field is fragmented, and there exists no comprehensive comparison of the existing state-of-the-art AB-KDEs. We provide a comparison of some state-of-the-art and classical AB-KDE methods as well as a computational framework. We also present a novel implementation of a full principal axes rotation hyper-ellipsoid variant of the k-Nearest Neighbours algorithm and a Gaussian extension to K-NN. The extensive experimental results show the fixed bandwidth rule-of-thumb methods achieve satisfactory results. Further, the balloon estimators are shown to be superior in the higher dimensional spaces, with higher modes or data on non-linear manifolds. The sample point estimators show utility when data are scarce in low dimensions. The empirical results show that our full rotation hyper-ellipsoid estimator and our Gaussian K-NN are state-of-the-art and will have a significant positive impact on data analysis algorithms. Especially algorithms which depend upon underlying density estimates on “complex” higher-dimensional data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramson, I.S.: On bandwidth variation in kernel estimates-a square root law. Ann. Stat. 10(4), 1217–1223 (1982)

    Article  MathSciNet  Google Scholar 

  2. Barnard, E.: Maximum leave-one-out likelihood for kernel density estimation. In: Proceedings of the Twenty-First Annual Symposium of the Pattern Recognition Association of South Africa (2010)

    Google Scholar 

  3. Bithell, J.F.: An application of density estimation to geographical epidemiology. Stat. Med. 9(6), 691–701 (1990)

    Article  Google Scholar 

  4. Boltz, S., Debreuve, E., Barlaud, M.: High-dimensional statistical measure for region-of-interest tracking. IEEE Trans. Image Process. 18(6), 1266–1283 (2009)

    Article  MathSciNet  Google Scholar 

  5. Botev, Z.I., Grotowski, J.F., Kroese, D.P., et al.: Kernel density estimation via diffusion. Ann. Stat. 38(5), 2916–2957 (2010)

    Article  MathSciNet  Google Scholar 

  6. Breiman, L., Meisel, W., Purcell, E.: Variable kernel estimates of multivariate densities. Technometrics 19(2), 135–144 (1977)

    Article  Google Scholar 

  7. Budka, M., Gabrys, B., Musial, K.: On accuracy of pdf divergence estimators and their applicability to representative data sampling. Entropy 13(7), 1229–1266 (2011)

    Article  MathSciNet  Google Scholar 

  8. Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and data-driven scale selection. In: Eighth IEEE International Conference on Computer Vision. ICCV 2001. Proceedings, vol. 1, pp. 438–445. IEEE (2001)

    Google Scholar 

  9. DasGupta, A.: Some results on the curse of dimensionality and sample size recommendations. Calcutta Stat. Assoc. Bull. 50(3–4), 157–178 (2000)

    Article  MathSciNet  Google Scholar 

  10. Domeniconi, C., Gunopulos, D.: Locally adaptive techniques for pattern classification. In: Encyclopedia of Data Warehousing and Mining, 2nd edn., pp. 1170–1175. IGI Global, Hershey (2009)

    Chapter  Google Scholar 

  11. Duong, T., Hazelton, M.L.: Cross-validation bandwidth matrices for multivariate kernel density estimation. Scand. J. Stat. 32(3), 485–506 (2005)

    Article  MathSciNet  Google Scholar 

  12. Farmen, M., Marron, J.S.: An assessment of finite sample performance of adaptive methods in density estimation. Comput. Stat. Data Anal. 30(2), 143–168 (1999)

    Article  Google Scholar 

  13. Hall, P.: Large sample optimality of least squares cross-validation in density estimation. Ann. Stat. 11(4), 1156–1174 (1983)

    Article  MathSciNet  Google Scholar 

  14. Hall, P., Huber, C., Owen, A., Coventry, A.: Asymptotically optimal balloon density estimates. J. Multivariate Anal. 51(2), 352–371 (1994)

    Article  MathSciNet  Google Scholar 

  15. Hansen, B.E.: Lecture notes on nonparametrics. Lect. Notes (2009). (Report) University of Wisconsin

    Google Scholar 

  16. Kung, Y.H., Lin, P.S., Kao, C.H.: An optimal k-nearest neighbor for density estimation. Stat. Prob. Lett. 82(10), 1786–1791 (2012)

    Article  MathSciNet  Google Scholar 

  17. de Lima, M.S., Atuncar, G.S.: A Bayesian method to estimate the optimal bandwidth for multivariate kernel estimator. J. Nonparametric Stat. 23(1), 137–148 (2011)

    Article  MathSciNet  Google Scholar 

  18. Loftsgaarden, D.O., Quesenberry, C.P., et al.: A nonparametric estimate of a multivariate density function. Ann. Math. Stat. 36(3), 1049–1051 (1965)

    Article  MathSciNet  Google Scholar 

  19. Marshall, J.C., Hazelton, M.L.: Boundary kernels for adaptive density estimators on regions with irregular boundaries. J. Multivariate Anal. 101(4), 949–963 (2010)

    Article  MathSciNet  Google Scholar 

  20. Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2004, vol. 2, p. 2. IEEE (2004)

    Google Scholar 

  21. Moshtagh, N.: Minimum volume enclosing ellipsoid. Convex Optim. 111, 112 (2005)

    Google Scholar 

  22. Sain, S.R.: Multivariate locally adaptive density estimation. Comput. Stat. Data Anal. 39(2), 165–186 (2002)

    Article  MathSciNet  Google Scholar 

  23. Salgado-Ugarte, I.H., Perez-Hernandez, M.A., et al.: Exploring the use of variable bandwidth kernel density estimators. Stata J. 3(2), 133–147 (2003)

    Article  Google Scholar 

  24. Scott, D.W.: Feasibility of multivariate density estimates. Biometrika 78(1), 197–205 (1991)

    Article  MathSciNet  Google Scholar 

  25. Scott, D.W., Sain, S.R.: Multidimensional density estimation. Handb. Stat. 24, 229–261 (2005)

    Article  Google Scholar 

  26. Shi, X.: Selection of bandwidth type and adjustment side in kernel density estimation over inhomogeneous backgrounds. Int. J. Geogr. Inf. Sci. 24(5), 643–660 (2010)

    Article  Google Scholar 

  27. Sibolla, B.H., Coetzee, S., Van Zyl, T.L.: A framework for visual analytics of spatio-temporal sensor observations from data streams. ISPRS Int. J. Geo Inf. 7(12), 475 (2018)

    Article  Google Scholar 

  28. Silverman, B.W.: Density Estimation for Statistics and Data Analysis, vol. 26. CRC Press, Boca Raton (1986)

    MATH  Google Scholar 

  29. Terrell, G.R., Scott, D.W.: Variable kernel density estimation. Ann. Stat. 20(3), 1236–1265 (1992)

    Article  MathSciNet  Google Scholar 

  30. van der Walt, C.M., Barnard, E.: Variable kernel density estimation in high-dimensional feature spaces. Association for the Advancement of Artificial (2017)

    Google Scholar 

  31. Wand, M., Jones, M.: Comparison of smoothing parameterizations in bivariate kernel density estimation. J. Am. Stat. Assoc. 88(422), 520–528 (1993)

    Article  MathSciNet  Google Scholar 

  32. Wu, T.J., Chen, C.F., Chen, H.Y.: A variable bandwidth selector in multivariate kernel density estimation. Stat. Prob. Lett. 77(4), 462–467 (2007)

    Article  MathSciNet  Google Scholar 

  33. Zeng, G.: A comparison study of computational methods of Kolmogorov-Smirnov statistic in credit scoring. Commun. Stat. Simul. Comput. 46(10), 7744–7760 (2017)

    Article  MathSciNet  Google Scholar 

  34. Zhang, L., Lin, J., Karim, R.: Adaptive kernel density-based anomaly detection for nonlinear systems. Knowl. Based Syst. 139, 50–63 (2018)

    Article  Google Scholar 

  35. Zhang, X., King, M., Hyndman, R.: A Bayesian approach to bandwidth selection for multivariate kernel density estimation. Comput. Stat. Data Anal. 50(11), 3009–3031 (2006)

    Article  MathSciNet  Google Scholar 

  36. Zhong, B., Liu, S., Yao, H.: Local spatial co-occurrence for background subtraction via adaptive binned kernel estimation. In: Zha, H., Taniguchi, R., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5996, pp. 152–161. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12297-2_15

    Chapter  Google Scholar 

  37. Zougab, N., Adjabi, S., Kokonendji, C.C.: Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation. Comput. Stat. Data Anal. 75, 28–38 (2014)

    Article  MathSciNet  Google Scholar 

  38. van Zyl, T.L.: Machine learning on geospatial big data. In: Big Data: Techniques and Technologies in Geoinformatics, p. 133. CRC Press, Boca Raton (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Zyl, T.L. (2022). Full Rotation Hyper-ellipsoid Multivariate Adaptive Bandwidth Kernel Density Estimator. In: Jembere, E., Gerber, A.J., Viriri, S., Pillay, A. (eds) Artificial Intelligence Research. SACAIR 2021. Communications in Computer and Information Science, vol 1551. Springer, Cham. https://doi.org/10.1007/978-3-030-95070-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95070-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95069-9

  • Online ISBN: 978-3-030-95070-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics