[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Research-Teaching Guide for Visual Data Analysis in Digital Humanities

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020)

Abstract

The use of visualization to underpin distant reading arguments on cultural heritage data has established in the digital humanities domain. Novel strategies to represent data visually typically arise from interdisciplinary projects involving humanities and visualization scholars. However, the quality of outcomes might be inhibited as typical challenges of interdisciplinary research arise, and, at the same time, problem solving strategies are missing. I taught a course on visual data analysis in the digital humanities to let students with diverse study backgrounds experience those challenges in their early academic careers. This paper illustrates the research-teaching components of my course. This includes the contents of the theoretical training with active learning tasks, aspects of the practical training and considerations for teachers aiming to compose a related course.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://books.google.com/ngrams.

  2. 2.

    https://datastudio.withgoogle.com/.

  3. 3.

    https://leafletjs.com/.

  4. 4.

    http://www.informatik.uni-leipzig.de/geotemco/.

  5. 5.

    http://timeline.knightlab.com/.

  6. 6.

    https://www.sutori.com/.

  7. 7.

    https://gephi.org/.

  8. 8.

    https://hdlab.stanford.edu/palladio/.

  9. 9.

    https://voyant-tools.org/.

  10. 10.

    http://tapor.ca/.

  11. 11.

    https://www.hi.uni-stuttgart.de/gnt/pdm/.

  12. 12.

    https://home.uni-leipzig.de/mim/musici/.

References

  1. Aigner, W., Miksch, S., Schumann, H., Tominski, C.: Visualization of Time-Oriented Data, 1st edn. Springer, Heidelberg (2011). https://doi.org/10.1007/978-0-85729-079-3

    Book  Google Scholar 

  2. Bach, B., Dragicevic, P., Archambault, D., Hurter, C., Carpendale, S.: A descriptive framework for temporal data visualizations based on generalized space-time cubes. Comput. Graph. Forum 36(6), 36–61 (2015)

    Article  Google Scholar 

  3. Baker, F.W.: Close Reading and What It Means for Media Literacy (2014). https://www.middleweb.com/15929/close-reading-and-media-literacy/

  4. Barker, E., Pelling, C., Bouzarovski, S., Isaksen, L.: Mapping the world of an ancient Greek Historian: the HESTIA project. In: Proceedings of the Digital Humanities 2010 (2010)

    Google Scholar 

  5. Bastian, M., Heymann, S., Jacomy, M., et al.: Gephi: an open source software for exploring and manipulating networks. In: ICWSM, vol. 8, pp. 361–362 (2009)

    Google Scholar 

  6. Bezerianos, A., Dragicevic, P., Fekete, J., Bae, J., Watson, B.: GeneaQuilts: a system for exploring large genealogies. IEEE Trans. Vis. Comput. Graph. 16(6), 1073–1081 (2010)

    Article  Google Scholar 

  7. Binkis, S.: Reading Visual Images: The First World War (2020). https://dcc.newberry.org/teachers/x5lljd50

  8. Börner, K., Eide, O., Mchedlidze, T., Rehbein, M., Scheuermann, G.: Network visualization in the humanities (Dagstuhl Seminar 18482). Dagstuhl Rep. 8(11), 139–153 (2019). https://doi.org/10.4230/DagRep.8.11.139. http://drops.dagstuhl.de/opus/volltexte/2019/10359

  9. Bostock, M., Ogievetsky, V., Heer, J.: D data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011)

    Article  Google Scholar 

  10. Burke, B.: A Close Look at Close Reading: Scaffolding Students with Complex Texts (2012)

    Google Scholar 

  11. Busa, R.: The Annals of Humanities Computing: The Index Thomisticus. Raccolta delle opere di Roberto Busa, North Holland Publishing Company (1980). https://books.google.dk/books?id=Ph29oAEACAAJ

  12. Cao, N., Cui, W.: Introduction to Text Visualization. Atlantis Briefs in Artificial Intelligence. Atlantis Press, Paris (2016). https://cds.cern.ch/record/2230485

  13. Cheema, M.F., Jänicke, S., Scheuermann, G.: AnnotateVis: combining traditional close reading with visual text analysis. In: Workshop on Visualization for the Digital Humanities, IEEE VIS 2016, Baltimore, Maryland, USA (2016)

    Google Scholar 

  14. Cleveland, W.S., McGill, R.: The many faces of a scatterplot. J. Am. Stat. Assoc. 79(388), 807–822 (1984)

    Article  MathSciNet  Google Scholar 

  15. Collins, C., Viegas, F.B., Wattenberg, M.: Parallel tag clouds to explore and analyze faceted text corpora. In: 2009 IEEE Symposium on Visual Analytics Science and Technology, pp. 91–98, October 2009. https://doi.org/10.1109/VAST.2009.5333443

  16. Eder, M.: Stylometry, network analysis, and Latin literature. In: Proceedings of the Digital Humanities 2014 (2014)

    Google Scholar 

  17. Healey, M.: Linking research and teaching exploring disciplinary spaces and the role of inquiry-based learning. Reshaping the University: New Relationships between Research, Scholarship and Teaching, pp. 67–78 (2005)

    Google Scholar 

  18. Heyer, G., Isemann, D.: Digital und computational humanities. In: Book of Abstracts zum DHd Workshop Informatik und die Digital Humanities (2014)

    Google Scholar 

  19. Hinrichs, U., Forlini, S., Moynihan, B.: Speculative practices: utilizing infovis to explore untapped literary collections. IEEE Trans. Vis. Comput. Graph. 22(1), 429–438 (2016)

    Article  Google Scholar 

  20. Hinrichs, U., Forlini, S., Moynihan, B.: In defense of sandcastles: research thinking through visualization in digital humanities. Digit. Scholarsh. Hum. 34, i80–i99 (2018)

    Google Scholar 

  21. Jänicke, S.: On the impact of the Merseburg incantations. In: Conference Abstracts of the Digital Humanities 2017 (2017)

    Google Scholar 

  22. Jänicke, S., Franzini, G., Cheema, M.F., Scheuermann, G.: Visual text analysis in digital humanities. Comput. Graph. Forum 36(6), 226–250 (2017)

    Article  Google Scholar 

  23. Jänicke, S., Wrisley, D.J.: Interactive visual alignment of medieval text versions. In: 2017 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 127–138, October 2017. https://doi.org/10.1109/VAST.2017.8585505

  24. Jänicke, S.: Valuable research for visualization and digital humanities: a balancing act. In: Workshop on Visualization for the Digital Humanities, IEEE VIS 2016, Baltimore, Maryland, USA (2016)

    Google Scholar 

  25. Jänicke, S.: A visualization course for journalism students. In: IEEE VIS 2019 Workshop on Visualization for Communication (VisComm) (2019)

    Google Scholar 

  26. Jänicke, S., Blumenstein, J., Rücker, M., Zeckzer, D., Scheuermann, G.: TagPies: comparative visualization of textual data. In: Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 40–51. INSTICC, SciTePress (2018). https://doi.org/10.5220/0006548000400051

  27. Jänicke, S., Focht, J., Scheuermann, G.: Interactive visual profiling of musicians. IEEE Trans. Vis. Comput. Graph. 22(1), 200–209 (2016)

    Article  Google Scholar 

  28. Jänicke, S., Franzini, G., Cheema, M.F., Scheuermann, G.: On close and distant reading in digital humanities: a survey and future challenges. In: Borgo, R., Ganovelli, F., Viola, I. (eds.) Eurographics Conference on Visualization (EuroVis) - STARs. The Eurographics Association (2015)

    Google Scholar 

  29. Jänicke, S., Gessner, A.: A distant reading visualization for variant graphs. In: Proceedings of the Digital Humanities 2015 (2015)

    Google Scholar 

  30. Jänicke, S., Geßner, A., Franzini, G., Terras, M., Mahony, S., Scheuermann, G.: TRAViz: a visualization for variant graphs. Digit. Scholarsh. Hum. 30(Suppl. 1), i83–i99 (2015)

    Google Scholar 

  31. Jänicke, S., Scheuermann, G.: On the visualization of hierarchical relations and tree structures with TagSpheres. In: Braz, J., et al. (eds.) VISIGRAPP 2016. CCIS, vol. 693, pp. 199–219. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64870-5_10

    Chapter  Google Scholar 

  32. Jänicke, S.: Teaching on the intersection of visualization and digital humanities. In: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, pp. 100–109. INSTICC, SciTePress (2020)

    Google Scholar 

  33. Jänicke, S., Kaur, P., Kuzmicki, P., Schmidt, J.: Participatory visualization design as an approach to minimize the gap between research and application. In: Gillmann, C., Krone, M., Reina, G., Wischgoll, T. (eds.) VisGap - The Gap between Visualization Research and Visualization Software. The Eurographics Association (2020). https://doi.org/10.2312/visgap.20201108

  34. Jockers, M.L.: Macroanalysis: Digital Methods and Literary History, 1st edn. University of Illinois Press, Champaign (2013)

    Book  Google Scholar 

  35. Kaufman, M.: ‘Everything on paper will be used against me’: Quantifying Kissinger. In: Proceedings of the Digital Humanities 2015 (2015)

    Google Scholar 

  36. Kehoe, A., Gee, M.: eMargin: a collaborative textual annotation tool. Ariadne (71) (2013)

    Google Scholar 

  37. Kerren, A., Stasko, J.T., Dykes, J.: Teaching information visualization. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 65–91. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70956-5_4

    Chapter  Google Scholar 

  38. Khulusi, R., Jänicke, S., Kusnick, J., Focht, J.: An interactive chart of biography. In: 2019 IEEE Pacific Visualization Symposium (PacificVis) (2019)

    Google Scholar 

  39. Khulusi, R., Kusnick, J., Focht, J., Jänicke, S.: musiXplora: visual analysis of a musicological encyclopedia. In: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, pp. 76–87. INSTICC, SciTePress (2020). https://doi.org/10.5220/0008977100760087

  40. MacEachren, A.M., Kraak, M.J.: Exploratory cartographic visualization: advancing the agenda (1997)

    Google Scholar 

  41. Meinecke, C., Jänicke, S.: Visual analysis of engineer’s biographies and engineering branches. In: LEVIA 2018: Leipzig Symposium on Visualization in Applications (2018)

    Google Scholar 

  42. Mesmer, H.A., Rose-McCully, M.: A closer look at close reading: three under-the-radar skills needed to comprehend sentences. Read. Teach. 71(4), 451–461 (2018). https://doi.org/10.1002/trtr.1639. https://ila.onlinelibrary.wiley.com/doi/abs/10.1002/trtr.1639

  43. Michel, J.B., et al.: Quantitative analysis of culture using millions of digitized books. Science 331(6014), 176–182 (2011)

    Article  Google Scholar 

  44. Moretti, F.: Graphs, Maps, Trees: Abstract Models for a Literary History. Verso (2005)

    Google Scholar 

  45. Munzner, T.: A nested model for visualization design and validation. IEEE Trans. Vis. Comput. Graph. 15(6), 921–928 (2009). https://doi.org/10.1109/TVCG.2009.111

    Article  Google Scholar 

  46. Munzner, T.: Visualization Analysis and Design. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  47. Propp, V.: Morphology of the Folktale, vol. 9. University of Texas Press (2010)

    Google Scholar 

  48. Reckziegel, M., Cheema, M.F., Scheuermann, G., Jänicke, S.: Predominance tag maps. IEEE Trans. Vis. Comput. Graph. 24(6), 1893–1904 (2018)

    Article  Google Scholar 

  49. Rendgen, S.: The Minard System: The Complete Statistical Graphics of Charles-Joseph Minard. Chronicle Books (2018)

    Google Scholar 

  50. Rosenberg, D., Grafton, A.: Cartographies of Time: A History of the Timeline. Princeton Architectural Press (2013)

    Google Scholar 

  51. Rushmeier, H., Dykes, J., Dill, J., Yoon, P.: Revisiting the need for formal education in visualization. IEEE Comput. Graph. Appl. 27(6), 12–16 (2007)

    Article  Google Scholar 

  52. Schwerdtfeger, A.: Erkenntnisgewinn in der Wissenschaft (2020)

    Google Scholar 

  53. Shi, L., Wei, F., Liu, S., Tan, L., Lian, X., Zhou, M.: Understanding text corpora with multiple facets. In: 2010 IEEE Symposium on Visual Analytics Science and Technology (VAST), pp. 99–106, October 2010

    Google Scholar 

  54. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the Visual Languages, pp. 336–343 (1996)

    Google Scholar 

  55. Slocum, T.A., McMaster, R.B., Kessler, F.C., Howard, H.H.: Thematic Cartography and Geovisualization. Prentice Hall Series in Geographic Information Science, 3rd international edn. Prentice Hall (2009)

    Google Scholar 

  56. Spence, R.: Information Visualization, vol. 1. Springer, Heidelberg (2001)

    Google Scholar 

  57. Tamassia, R.: Handbook of Graph Drawing and Visualization (Discrete Mathematics and Its Applications). Chapman & Hall/CRC (2007)

    Google Scholar 

  58. Tominski, C., Schumann, H.: Interactive Visual Data Analysis. AK Peters Visualization Series, CRC Press (2020). https://doi.org/10.1201/9781315152707. https://ivda-book.de

  59. Viegas, F., Wattenberg, M., Feinberg, J.: Participatory visualization with wordle. IEEE Trans. Vis. Comput. Graph. 15(6), 1137–1144 (2009)

    Article  Google Scholar 

  60. Viegas, F., Wattenberg, M., van Ham, F., Kriss, J., McKeon, M.: ManyEyes: a site for visualization at internet scale. IEEE Trans. Vis. Comput. Graph. 13(6), 1121–1128 (2007)

    Article  Google Scholar 

  61. Ware, C.: Information Visualization: Perception for Design. Elsevier (2012)

    Google Scholar 

  62. Windhager, F., et al.: Visualization of cultural heritage collection data: state of the art and future challenges. IEEE Trans. Vis. Comput. Graph. 25(6), 2311–2330 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Jänicke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jänicke, S. (2022). A Research-Teaching Guide for Visual Data Analysis in Digital Humanities. In: Bouatouch, K., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2020. Communications in Computer and Information Science, vol 1474. Springer, Cham. https://doi.org/10.1007/978-3-030-94893-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94893-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94892-4

  • Online ISBN: 978-3-030-94893-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics