Abstract
Visualization of multidimensional data is a difficult task, for which there are many tools. Among these tools, dimensionality reduction methods were shown to be particularly helpful to explore data visually. Techniques with good visual separation are very popular, such as those from the SNE-class, but those often are computationally expensive and non-parametric. An approach based on neural networks was recently proposed to address those shortcomings, but it introduces some fuzziness in the generated projection, which is not desired. In this paper we thoroughly explain the parameter space of this neural network approach and propose a new neighborhood-based learning paradigm, which further improves the quality of the projections learned by the neural networks, and we illustrate our approach on large real-world datasets.
This study was financed in part by FAPESP (2014/12236-1, 2015/22308-2 and 2017/25835-9), CNPq (303808/2018-7) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Becker, M., Lippel, J., Stuhlsatz, A.: Regularized nonlinear discriminant analysis - an approach to robust dimensionality reduction for data visualization. In: Proceedings of the VISIGRAPP, pp. 116–127 (2017)
Cunningham, J., Ghahramani, Z.: Linear dimensionality reduction: survey, insights, and generalizations. JMLR 16, 2859–2900 (2015)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the CVPR, pp. 248–255 (2009)
Elson, J., Douceur, J.J., Howell, J., Saul, J.: Asirra: a CAPTCHA that exploits interest-aligned manual image categorization. In: Proceedings of ACM CCS, pp. 366–374 (2007)
Engel, D., Hüttenberger, L., Hamann, B.: A survey of dimension reduction methods for high-dimensional data analysis and visualization. In: Proceedings of IRTG Workshop, vol. 27, pp. 135–149. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)
Espadoto, M., Hirata, N., Telea, A.: Deep learning multidimensional projections. J. Inf. Vis. (2020). https://doi.org/10.1177/1473871620909485
Espadoto, M., Hirata, N.S.T., Falcão, A.X., Telea, A.C.: Improving neural network-based multidimensional projections. In: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, pp. 29–41. INSTICC, SciTePress (2020). https://doi.org/10.5220/0008877200290041
Espadoto, M., Martins, R.M., Kerren, A., Hirata, N.S., Telea, A.C.: Towards a quantitative survey of dimension reduction techniques. IEEE TVCG (2019). https://doi.org/10.1109/TVCG.2019.2944182
Feurer, M., Hutter, F.: Hyperparameter optimization. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_1
Goldberger, J., Roweis, S., Hinton, G.E., Salakhutdinov, R.R.: Neighbourhood components analysis. In: NIPS, vol. 17, pp. 513–520 (2005)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Hoffman, P., Grinstein, G.: A survey of visualizations for high-dimensional data mining. In: Information Visualization in Data Mining and Knowledge Discovery, pp. 47–82. Morgan Kaufmann (2002)
Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.: Efficient hyperparameter optimization of deep learning algorithms using deterministic RBF surrogates. In: Proceedings of the AAAI (2017)
Joia, P., Coimbra, D., Cuminato, J.A., Paulovich, F.V., Nonato, L.G.: Local affine multidimensional projection. IEEE TVCG 17(12), 2563–2571 (2011)
Jolliffe, I.T.: Principal component analysis and factor analysis. In: Jolliffe, I.T. (ed.) Principal Component Analysis, pp. 115–128. Springer, Heidelberg (1986). https://doi.org/10.1007/978-1-4757-1904-8_7
Kehrer, J., Hauser, H.: Visualization and visual analysis of multifaceted scientific data: a survey. IEEE TVCG 19(3), 495–513 (2013)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. CoRR abs/1312.6114 (2013)
Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: NIPS, pp. 950–957 (1992)
LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. AT&T Labs, vol. 2 (2010). http://yann.lecun.com/exdb/mnist
Liu, S., Maljovec, D., Wang, B., Bremer, P.T., Pascucci, V.: Visualizing high-dimensional data: advances in the past decade. IEEE TVCG 23(3), 1249–1268 (2015)
Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150. Association for Computational Linguistics (2011)
van der Maaten, L.: Learning a parametric embedding by preserving local structure. In: Proceedings of the AI-STATS (2009)
van der Maaten, L.: Accelerating t-SNE using tree-based algorithms. JMLR 15, 3221–3245 (2014)
van der Maaten, L., Hinton, G.E.: Visualizing data using t-SNE. JMLR 9, 2579–2605 (2008)
Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs (2016)
Martins, R., Minghim, R., Telea, A.C.: Explaining neighborhood preservation for multidimensional projections. In: Proceedings of the CGVC, pp. 121–128. Eurographics (2015)
McInnes, L., Healy, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426 (2018)
Nonato, L., Aupetit, M.: Multidimensional projection for visual analytics: linking techniques with distortions, tasks, and layout enrichment. IEEE TVCG (2018)
Park, M.Y., Hastie, T.: L1-regularization path algorithm for generalized linear models. J. R. Stat. Soc.: Ser. B 69(4), 659–677 (2007)
Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H.: Least square projection: a fast high-precision multidimensional projection technique and its application to document mapping. IEEE TVCG 14(3), 564–575 (2008)
Peason, K.: On lines and planes of closest fit to systems of point in space. Phil. Mag. 2(11), 559–572 (1901)
Pezzotti, N., Höllt, T., Lelieveldt, B., Eisemann, E., Vilanova, A.: Hierarchical stochastic neighbor embedding. Comput. Graph. Forum 35(3), 21–30 (2016)
Pezzotti, N., Lelieveldt, B., van der Maaten, L., Höllt, T., Eisemann, E., Vilanova, A.: Approximated and user steerable t-SNE for progressive visual analytics. IEEE TVCG 23, 1739–1752 (2017)
Qian, N.: On the momentum term in gradient descent learning algorithms. Neural Netw. 12(1), 145–151 (1999)
Rauber, P., Falcão, A.X., Telea, A.: Visualizing time-dependent data using dynamic t-SNE. In: Proceedings of the EuroVis: Short Papers, pp. 73–77 (2016)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1986)
Sorzano, C., Vargas, J., Pascual-Montano, A.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014)
Srebro, N., Shraibman, A.: Rank, trace-norm and max-norm. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 545–560. Springer, Heidelberg (2005). https://doi.org/10.1007/11503415_37
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the CVPR, pp. 2818–2826 (2016)
Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
Torgerson, W.: Theory and Methods of Scaling. Wiley, Hoboken (1958)
van der Maaten, L., Postma, E.: Dimensionality reduction: a comparative review. Technical report, Tilburg University, Netherlands (2009). tiCC 2009-005
Venna, J., Kaski, S.: Visualizing gene interaction graphs with local multidimensional scaling. In: Proceedings of the ESANN, pp. 557–562 (2006)
Vernier, E., Garcia, R., da Silva, I., Comba, J., Telea, A.: Quantitative evaluation of time-dependent multidimensional projection techniques. In: Computer Graphics Forum, vol. 39, no. 20 (2020)
Wattenberg, M.: How to use t-SNE effectively (2016). https://distill.pub/2016/misread-tsne
Wilson, A., Roelofs, R., Stern, M., Srebro, N., Recht, B.: The marginal value of adaptive gradient methods in machine learning. In: NIPS, pp. 4148–4158. Curran Associates, Inc. (2017)
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)
Xie, H., Li, J., Xue, H.: A survey of dimensionality reduction techniques based on random projection. arXiv preprint arXiv:1706.04371 (2017)
Yao, Y., Rosasco, L., Caponnetto, A.: On early stopping in gradient descent learning. Constr. Approx. 26(2), 289–315 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Modrakowski, T.S., Espadoto, M., Falcão, A.X., Hirata, N.S.T., Telea, A. (2022). Improving Deep Learning Projections by Neighborhood Analysis. In: Bouatouch, K., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2020. Communications in Computer and Information Science, vol 1474. Springer, Cham. https://doi.org/10.1007/978-3-030-94893-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-94893-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-94892-4
Online ISBN: 978-3-030-94893-1
eBook Packages: Computer ScienceComputer Science (R0)