Abstract
Due to the emergence of rapid, mass-produced information in the Web2.0 era, a large amount of weakly labeled information (star ratings, etc.) has been widespread. The Weakly-Supervised Deep Embedding (WDE) model is a good choice for utilizing this kind of data. The ratings are treated as weakly-supervised signals for pre-training, fine tuning the whole model with a small amount of manually labeled data. In this research, we proposed to change the original unidirectional transmission into bidirectional in the LSTM layer to capture the semantics in both directions, and an attention mechanism is introduced, which is helpful to capture the important information in the context and improve the accuracy of sentiment classification. Finally, we use TF-IDF and LDA topic models to mine the review topics and extract the consumers’ opinions on different sentiment polarities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Piryani, R., Gupta, V., Singh, V.K.: Movie Prism: A novel system for aspect level sentiment profiling of movies. J. Intell. Fuzzy Syst. 32(5), 3297–3311 (2017)
Araque, O., Corcuera-Platas, I., Sánchez-Rada, J.F., Iglesias, C.A.: Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Syst. Appl. 77, 236–246 (2017)
Chen, L., Martineau, J., Cheng, D., Sheth, A.: Clustering for simultaneous extraction of aspects and features from reviews. In: NAACL-HLT, pp. 789–799 (2016)
Ren, J., Li, X., Sheng, C., Gao, Y.: Research on attachment behavior of tourism E-commerce websites based on the goal-framing theory. China Acad. J. Electron. Publ. House (C), 107–108 (2012)
Zhao, W., Guan, Z., Chen, L., et al.: Weakly-supervised deep embedding for product review sentiment analysis. IEEE Trans. Knowl. Data Eng. 30(1), 185–197 (2018)
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE TPAMI 35(8), 1798–1828 (2013)
Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing from scratch . JMLR 12, 2493–2537 (2011)
Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5), 602–610 (2005)
Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for Twitter sentiment classification. In: ACL, vol. 1, pp. 1555–1565 (2014)
Thet, T., et al.: Aspect-Based Sentiment Analysis of Movie Reviews on Discussion Boards, pp. 823–848. SAGE Publications, London (2010)
Taboada, M., Brooke, J., et al.: Lexicon-based methods for sentiment analysis . Comput. Linguist. 37(2), 267–307 (2011)
Pang, B., Lee, L., Vaithyanathan, S.: Sentiment classification using machine learning techniques. In: Proceedings of Empirical Methods in Natural Language Processing, pp. 79–86. MIT Press, Cambridge (2002)
Turney, D.: Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 417–424 (2002)
Sanjiv, D., Mike, C.: Yahoo! for Amazon: sentiment parsing from small talk on the web. In: Proceedings of the 8th Asia Pacific Finance Association Annual Conference (2001)
Fei, Z., Liu, J., Wu, G.: Sentiment classification using phrase patterns. In: The Fourth International Conference on Computer and Information Technology, CIT 2004, pp. 1147–1152. IEEE (2004)
Dave, K., Lawrence, S., Pennock, M.: Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: Proceedings of the 12th International Conference on World Wide Web, pp. 519–528. ACM (2003)
Li, C., Huimin, W., Jin, Q.: Emotion classification of chinese microblog text via fusion of BoW and eVector feature representations. In: Zong, C., Nie, J.-Y., Zhao, D., Feng, Y. (eds.) NLPCC 2014. CCIS, vol. 496, pp. 217–228. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45924-9_20
Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)
Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008)
Dave, K., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: WWW, pp. 519–528 (2003)
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391 (1990)
Ding, X., Liu, B., Yu, P.S.: A holistic lexicon-based approach to opinion mining. In: WSDM, pp. 231–240 (2008)
Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., Xu, K.: Adaptive recursive neural network for target-dependent Twitter sentiment classification. In: ACL, pp. 49–54 (2014)
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. JMLR 12, 2121–2159 (2011)
Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 56(4), 82–89 (2013)
Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: ICML, pp. 513–520 (2011)
Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tagging. In: WWW, pp. 211–220 (2007)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Hu, M., Liu, B.: Mining and summarizing customer reviews. In: SIGKDD, pp. 168–177 (2004)
Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. In: ACL (2014)
Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP, pp. 1746–1751 (2014)
Kiros, R., et al.: Skip-thought vectors. In: NIPS, pp. 3294–3302 (2015)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv:1409.0473 (2014)
Tang, D., Qin, B., Liu, T.: Aspect level sentiment classification with deep memory network. In: Proceedings of the Conference on Empirical Methods on Natural Language Processing, pp. 214–224 (2016)
Pham, D.H., Le, A.C.: Learning multiple layers of knowledge representation for aspect based sentiment analysis. Data Knowl. Eng. 114, 26–39 (2017)
Cheng, J., Zhao, S., Zhang, J., King, I., Zhang, X., Wang, H.: Aspect-level sentiment classification with heat (hierarchical attention) network. In: Proceedings of the Conference on Information and Knowledge Management, pp. 97–106. ACM (2017)
Chen, P., Sun, Z., Bing, L., Yang, W.: Recurrent attention network on memory for aspect sentiment analysis. In: Proceedings of the EMNLP, pp. 452–461 (2017)
Ma, D., Li, S., Zhang, X., Wang, H.: Interactive attention networks for aspect-level sentiment classification. In: Proceedings of the IJCAI, pp. 4068–4074 (2017)
Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers (2012)
Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: WWW, pp. 342–351 (2005)
Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: ACL, pp. 142–150 (2011)
Nguyen, T.H., Shirai, K.: PhraseRNN: phrase recursive neural network for aspect-based sentiment analysis. In: EMNLP, pp. 2509–2514 (2015)
Qiu, X., Huang, X.: Convolutional neural tensor network architecture for community-based question answering. In: IJCAI, pp. 1305–1311 (2015)
Farman, A., Daehan, K., Pervez, K.: Transportation sentiment analysis using word embedding and ontology-based topic modeling. Knowl.-Based Syst. 174, 27–42 (2019)
Socher, R., Bengio, B., Manning, C.: Deep learning for NLP. In: ACL (Tutorial Abstracts), p. 5 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xiang, K., Fujii, A. (2022). Reputation Analysis Based on Weakly-Supervised Bi-LSTM-Attention Network. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 294. Springer, Cham. https://doi.org/10.1007/978-3-030-82193-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-82193-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82192-0
Online ISBN: 978-3-030-82193-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)