Abstract
With the popularity of edge-based trajectory applications, application providers have accumulated a large amount of user trajectory data. However, direct use of trajectory data containing rich privacy information has the risk of leaking user privacy. In this paper, we propose an edge trajectory protection approach using the technique of blockchain. This protection mechanism not only takes account of users information protection and identity authentication in block generation, but considers the screening mechanism to ensure the integrity of most authorized nodes. We propose trajectory entropy suppression method that combines it with a cost function evaluation sequence and achieve collaboration between regions by deploying smart contracts. Our experimental results demonstrate the efficiency and effectiveness of our proposed model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
An, J., Yang, H., Gui, X., Zhang, W., Gui, R., Kang, J.: TCNS: node selection with privacy protection in crowdsensing based on twice consensuses of blockchain. IEEE Trans. Netw. Serv. Manag. 16(3), 1255–1267 (2019)
Dai, W., Qiu, L., Wu, A., Qiu, M.: Cloud infrastructure resource allocation for big data applications. IEEE Trans. Big Data 4(3), 313–324 (2016)
Dai, W., Qiu, M., Qiu, L., Chen, L., Wu, A.: Who moved my data? privacy protection in smartphones. IEEE Commun. Mag. 55(1), 20–25 (2017)
Deuber, D., Magri, B., Thyagarajan, S.A.K.: Redactable blockchain in the permissionless setting. In: 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, 19–23 May 2019, pp. 124–138. IEEE (2019)
Ding, W., Yan, Z., Deng, R.H.: Encrypted data processing with homomorphic re-encryption. Inf. Sci. 409, 35–55 (2017)
Gai, K., Guo, J., Zhu, L., Yu, S.: Blockchain meets cloud computing: a survey. IEEE Commun. Surv. Tutor. 22(3), 2009–2030 (2020)
Gai, K., Qiu, M.: Blend arithmetic operations on tensor-based fully homomorphic encryption over real numbers. IEEE Trans. Ind. Info. 14(8), 3590–3598 (2018)
Gai, K., Wu, Y., Zhu, L., Xu, L., Zhang, Y.: Permissioned blockchain and edge computing empowered privacy-preserving smart grid networks. IEEE Internet Things J. 6(5), 7992–8004 (2019)
Gai, K., Wu, Y., Zhu, L., Zhang, Z., Qiu, M.: Differential privacy-based blockchain for industrial internet-of-things. IEEE Trans. Ind. Info. 16(6), 4156–4165 (2020)
Keshk, M., Turnbull, B., Moustafa, N., Vatsalan, D., Choo, K.R.: A privacy-preserving-framework-based blockchain and deep learning for protecting smart power networks. IEEE Trans. Ind. Inform. 16(8), 5110–5118 (2020)
Kuang, L., Yang, L.T., Feng, J., Dong, M.: Secure tensor decomposition using fully homomorphic encryption scheme. IEEE Trans. Cloud Com. 6(3), 868–878 (2018)
Li, L., Lu, R., Choo, K.R., Datta, A., Shao, J.: Privacy-preserving-outsourced association rule mining on vertically partitioned databases. IEEE Trans. Inf. Forensics Secur. 11(8), 1847–1861 (2016)
Liu, H., Zhang, Y., Yang, T.: Blockchain-enabled security in electric vehicles cloud and edge computing. IEEE Netw. 32(3), 78–83 (2018)
Lu, R., Jin, X., Zhang, S., Qiu, M., Wu, X.: A study on big knowledge and its engineering issues. IEEE Trans. on Know. and Data Eng. 31(9), 1630–1644 (2018)
Ma, Z., Zhang, T., Liu, X., Li, X., Ren, K.: Real-time privacy-preserving data release over vehicle trajectory. IEEE Trans. Veh. Technol. 68(8), 8091–8102 (2019)
Qiu, H., Qiu, M., Memmi, G., Ming, Z., Liu, M.: A dynamic scalable blockchain based communication architecture for IoT. In: SmartBlock, pp. 159–166 (2018)
Sharma, V., You, I., Palmieri, F., Jayakody, D.N.K., Li, J.: Secure and energy-efficient handover in fog networks using blockchain-based DMM. IEEE Commun. Mag. 56(5), 22–31 (2018)
Wu, Z., et al.: A location privacy-preserving system based on query range cover-up or location-based services. IEEE Trans. Veh. Technol. 69(5), 5244–5254 (2020)
Xie, J., et al.: A survey of blockchain technology applied to smart cities: research issues and challenges. IEEE Commun. Surv. Tutor. 21(3), 2794–2830 (2019)
Xu, J., et al.: An identity management and authentication scheme based on redactable blockchain for mobile networks. IEEE Trans. Veh. Technol. 69(6), 6688–6698 (2020)
Acknowledgement
This work is partially supported by National Natural Science Foundation of China (Grant Nos. 61972034, 61832012, 61771289), Natural Science Foundation of Shandong Province (Grant No. ZR2019ZD10), Natural Science Foundation of Beijing Municipality (Grant No. 4202068), Ministry of Education - China Mobile Research Fund Project (Grant No. MCM20180401).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, M., Li, G., Zhang, Y., Gai, K., Qiu, M. (2021). An Edge Trajectory Protection Approach Using Blockchain. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management. KSEM 2021. Lecture Notes in Computer Science(), vol 12817. Springer, Cham. https://doi.org/10.1007/978-3-030-82153-1_53
Download citation
DOI: https://doi.org/10.1007/978-3-030-82153-1_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82152-4
Online ISBN: 978-3-030-82153-1
eBook Packages: Computer ScienceComputer Science (R0)