[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Edge Trajectory Protection Approach Using Blockchain

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12817))

  • 2226 Accesses

Abstract

With the popularity of edge-based trajectory applications, application providers have accumulated a large amount of user trajectory data. However, direct use of trajectory data containing rich privacy information has the risk of leaking user privacy. In this paper, we propose an edge trajectory protection approach using the technique of blockchain. This protection mechanism not only takes account of users information protection and identity authentication in block generation, but considers the screening mechanism to ensure the integrity of most authorized nodes. We propose trajectory entropy suppression method that combines it with a cost function evaluation sequence and achieve collaboration between regions by deploying smart contracts. Our experimental results demonstrate the efficiency and effectiveness of our proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, J., Yang, H., Gui, X., Zhang, W., Gui, R., Kang, J.: TCNS: node selection with privacy protection in crowdsensing based on twice consensuses of blockchain. IEEE Trans. Netw. Serv. Manag. 16(3), 1255–1267 (2019)

    Article  Google Scholar 

  2. Dai, W., Qiu, L., Wu, A., Qiu, M.: Cloud infrastructure resource allocation for big data applications. IEEE Trans. Big Data 4(3), 313–324 (2016)

    Article  Google Scholar 

  3. Dai, W., Qiu, M., Qiu, L., Chen, L., Wu, A.: Who moved my data? privacy protection in smartphones. IEEE Commun. Mag. 55(1), 20–25 (2017)

    Article  Google Scholar 

  4. Deuber, D., Magri, B., Thyagarajan, S.A.K.: Redactable blockchain in the permissionless setting. In: 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, 19–23 May 2019, pp. 124–138. IEEE (2019)

    Google Scholar 

  5. Ding, W., Yan, Z., Deng, R.H.: Encrypted data processing with homomorphic re-encryption. Inf. Sci. 409, 35–55 (2017)

    Article  Google Scholar 

  6. Gai, K., Guo, J., Zhu, L., Yu, S.: Blockchain meets cloud computing: a survey. IEEE Commun. Surv. Tutor. 22(3), 2009–2030 (2020)

    Article  Google Scholar 

  7. Gai, K., Qiu, M.: Blend arithmetic operations on tensor-based fully homomorphic encryption over real numbers. IEEE Trans. Ind. Info. 14(8), 3590–3598 (2018)

    Article  Google Scholar 

  8. Gai, K., Wu, Y., Zhu, L., Xu, L., Zhang, Y.: Permissioned blockchain and edge computing empowered privacy-preserving smart grid networks. IEEE Internet Things J. 6(5), 7992–8004 (2019)

    Article  Google Scholar 

  9. Gai, K., Wu, Y., Zhu, L., Zhang, Z., Qiu, M.: Differential privacy-based blockchain for industrial internet-of-things. IEEE Trans. Ind. Info. 16(6), 4156–4165 (2020)

    Article  Google Scholar 

  10. Keshk, M., Turnbull, B., Moustafa, N., Vatsalan, D., Choo, K.R.: A privacy-preserving-framework-based blockchain and deep learning for protecting smart power networks. IEEE Trans. Ind. Inform. 16(8), 5110–5118 (2020)

    Article  Google Scholar 

  11. Kuang, L., Yang, L.T., Feng, J., Dong, M.: Secure tensor decomposition using fully homomorphic encryption scheme. IEEE Trans. Cloud Com. 6(3), 868–878 (2018)

    Article  Google Scholar 

  12. Li, L., Lu, R., Choo, K.R., Datta, A., Shao, J.: Privacy-preserving-outsourced association rule mining on vertically partitioned databases. IEEE Trans. Inf. Forensics Secur. 11(8), 1847–1861 (2016)

    Article  Google Scholar 

  13. Liu, H., Zhang, Y., Yang, T.: Blockchain-enabled security in electric vehicles cloud and edge computing. IEEE Netw. 32(3), 78–83 (2018)

    Article  Google Scholar 

  14. Lu, R., Jin, X., Zhang, S., Qiu, M., Wu, X.: A study on big knowledge and its engineering issues. IEEE Trans. on Know. and Data Eng. 31(9), 1630–1644 (2018)

    Article  Google Scholar 

  15. Ma, Z., Zhang, T., Liu, X., Li, X., Ren, K.: Real-time privacy-preserving data release over vehicle trajectory. IEEE Trans. Veh. Technol. 68(8), 8091–8102 (2019)

    Article  Google Scholar 

  16. Qiu, H., Qiu, M., Memmi, G., Ming, Z., Liu, M.: A dynamic scalable blockchain based communication architecture for IoT. In: SmartBlock, pp. 159–166 (2018)

    Google Scholar 

  17. Sharma, V., You, I., Palmieri, F., Jayakody, D.N.K., Li, J.: Secure and energy-efficient handover in fog networks using blockchain-based DMM. IEEE Commun. Mag. 56(5), 22–31 (2018)

    Article  Google Scholar 

  18. Wu, Z., et al.: A location privacy-preserving system based on query range cover-up or location-based services. IEEE Trans. Veh. Technol. 69(5), 5244–5254 (2020)

    Article  Google Scholar 

  19. Xie, J., et al.: A survey of blockchain technology applied to smart cities: research issues and challenges. IEEE Commun. Surv. Tutor. 21(3), 2794–2830 (2019)

    Article  Google Scholar 

  20. Xu, J., et al.: An identity management and authentication scheme based on redactable blockchain for mobile networks. IEEE Trans. Veh. Technol. 69(6), 6688–6698 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work is partially supported by National Natural Science Foundation of China (Grant Nos. 61972034, 61832012, 61771289), Natural Science Foundation of Shandong Province (Grant No. ZR2019ZD10), Natural Science Foundation of Beijing Municipality (Grant No. 4202068), Ministry of Education - China Mobile Research Fund Project (Grant No. MCM20180401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keke Gai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, M., Li, G., Zhang, Y., Gai, K., Qiu, M. (2021). An Edge Trajectory Protection Approach Using Blockchain. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management. KSEM 2021. Lecture Notes in Computer Science(), vol 12817. Springer, Cham. https://doi.org/10.1007/978-3-030-82153-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82153-1_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82152-4

  • Online ISBN: 978-3-030-82153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics