[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Spy the Lie: Fraudulent Jobs Detection in Recruitment Domain using Knowledge Graphs

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12816))

Abstract

Fraudulent jobs are an emerging threat over online recruitment platforms such as LinkedIn, Glassdoor. Fraudulent job postings affect the platform’s trustworthiness and have a negative impact on user experience. Therefore, these platforms need to detect and remove these fraudulent jobs. Generally, fraudulent job postings contain untenable facts about domain-specific entities such as mismatch in skills, industries, offered compensation, etc. However, existing approaches focus on studying writing styles, linguistics, and context-based features, and ignore the relationships among domain-specific entities. To bridge this gap, we propose an approach based on the Knowledge Graph (KG) of domain-specific entities to detect fraudulent jobs. In this paper, we present a multi-tier novel end-to-end framework called FRaudulent Jobs Detection (FRJD) Engine, which considers a) fact validation module using KGs, b) contextual module using deep neural networks c) meta-data module to capture the semantics of job postings. We conduct our experiments using a fact validation dataset containing 4 million facts extracted from job postings. Extensive evaluation shows that FRJD yields a 0.96 F1-score on the curated dataset of 157,880 job postings. Finally, we provide insights on the performance of different fact-checking algorithms on recruitment domain datasets.

P. Kumaraguru—Major part of this work was done while Ponnurangam Kumaraguru was a faculty at IIIT-Delhi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.aarp.org/money/scams-fraud/info-2020/ftc-job-scams.html.

  2. 2.

    https://hrdailyadvisor.blr.com/2015/01/19/what-is-recruitment-fraud-is-your-company-at-risk/.

  3. 3.

    https://www.consumer.ftc.gov/articles/0243-job-scams.

  4. 4.

    Triples and facts are used interchangeably.

  5. 5.

    http://emscad.samos.aegean.gr/.

References

  1. Alghamdi, B., Alharby, F.: An intelligent model for online recruitment fraud detection. J. Inf. Secur. 10(3), 155–176 (2019)

    Google Scholar 

  2. Bello, I., Zoph, B., Vasudevan, V., Le, Q.V.: Neural optimizer search with reinforcement learning. arXiv preprint arXiv:1709.07417 (2017)

  3. Bianchi, F., Rossiello, G., Costabello, L., Palmonari, M., Minervini, P.: Knowledge graph embeddings and explainable AI. arXiv preprint arXiv:2004.14843 (2020)

  4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. ACM (2008)

    Google Scholar 

  5. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)

    Google Scholar 

  6. Bourgonje, P., Schneider, J.M., Rehm, G.: From clickbait to fake news detection: an approach based on detecting the stance of headlines to articles. In: Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism, pp. 84–89 (2017)

    Google Scholar 

  7. Chen, L.C., Hsu, C.L., Lo, N.W., Yeh, K.H., Lin, P.H.: Fraud analysis and detection for real-time messaging communications on social networks. IEICE Trans. Inf. Syst. 100(10), 2267–2274 (2017)

    Article  Google Scholar 

  8. Cruz, J.C.B., Tan, J.A., Cheng, C.: Localization of fake news detection via multitask transfer learning. arXiv preprint arXiv:1910.09295 (2019)

  9. Gai, K., Qiu, M.: Reinforcement learning-based content-centric services in mobile sensing. IEEE Netw. 32(4), 34–39 (2018)

    Article  Google Scholar 

  10. Gai, K., Qiu, M., Zhao, H., Sun, X.: Resource management in sustainable cyber-physical systems using heterogeneous cloud computing. IEEE Trans. Sustainable Comput. 3(2), 60–72 (2017)

    Article  Google Scholar 

  11. Goyal, N., Sachdeva, N., Choudhary, V., Kar, R., Kumaraguru, P., Rajput, N.: Con2kg-a large-scale domain-specific knowledge graph. In: Proceedings of the 30th ACM Conference on Hypertext and Social Media, pp. 287–288. HT 2019, ACM, New York (2019)

    Google Scholar 

  12. Han, X., et al.: Openke: an open toolkit for knowledge embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 139–144 (2018)

    Google Scholar 

  13. Huang, G.K.W., Lee, J.C.: Hyperpartisan news and articles detection using Bert and Elmo. In: 2019 International Conference on Computer and Drone Applications (IConDA), pp. 29–32. IEEE (2019)

    Google Scholar 

  14. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1, Long Papers, pp. 687–696 (2015)

    Google Scholar 

  15. Khandelwal, S., Kumar, D.: Computational fact validation from knowledge graph using structured and unstructured information. In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, pp. 204–208. CoDS COMAD 2020. ACM, New York (2020)

    Google Scholar 

  16. Kim, J., Kim, H.-J., Kim, H.: Fraud detection for job placement using hierarchical clusters-based deep neural networks. Appl. Intell. 49(8), 2842–2861 (2019). https://doi.org/10.1007/s10489-019-01419-2

    Article  Google Scholar 

  17. Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez-Rodriguez, M.: Leveraging the crowd to detect and reduce the spread of fake news and misinformation. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 324–332 (2018)

    Google Scholar 

  18. Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web (2015)

    Google Scholar 

  19. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  20. Lu, Y.J., Li, C.T.: GCAN: Graph-aware co-attention networks for explainable fake news detection on social media. arXiv preprint arXiv:2004.11648 (2020)

  21. Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 3818–3824, IJCAI 2016. AAAI Press (2016)

    Google Scholar 

  22. Mahbub, S., Pardede, E.: Using contextual features for online recruitment fraud detection. In: International Conference on Information Systems Development, August 2018

    Google Scholar 

  23. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

    Google Scholar 

  24. Mausam, M.: Open information extraction systems and downstream applications. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 4074–4077 (2016)

    Google Scholar 

  25. Mozafari, J., Fatemi, A., Moradi, P.: A method for answer selection using DistilBERT and important words. In: 2020 6th International Conference on Web Research (ICWR), pp. 72–76. IEEE (2020)

    Google Scholar 

  26. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  27. Nguyen, D.Q., Nguyen, D.Q., Nguyen, T.D., Phung, D.: A convolutional neural network-based model for knowledge base completion and its application to search personalization. Semantic Web 10(5), 947–960 (2019)

    Article  Google Scholar 

  28. Nickel, M., Rosasco, L., Poggio, T.A., et al.: Holographic embeddings of knowledge graphs. In: AAAI (2016)

    Google Scholar 

  29. Nindyati, O., Nugraha, I.G.B.B.: Detecting scam in online job vacancy using behavioral features extraction. In: 2019 International Conference on ICT for Smart Society (ICISS), vol. 7, pp. 1–4. IEEE (2019)

    Google Scholar 

  30. Pan, J.Z., Pavlova, S., Li, C., Li, N., Li, Y., Liu, J.: Content based fake news detection using knowledge graphs. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 669–683. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_39

    Chapter  Google Scholar 

  31. Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., Stein, B.: A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638 (2017)

  32. Niharika Reddy, M., Mamatha, T., Balaram, A.: Analysis of e-recruitment systems and detecting e-recruitment fraud. In: Kumar, A., Mozar, S. (eds.) ICCCE 2018. LNEE, vol. 500, pp. 411–417. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0212-1_43

    Chapter  Google Scholar 

  33. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, November 2019

    Google Scholar 

  34. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

  35. Shaar, S., Babulkov, N., Da San Martino, G., Nakov, P.: That is a known lie: Detecting previously fact-checked claims. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3607–3618. Association for Computational Linguistics, July 2020

    Google Scholar 

  36. Shiralkar, P., Flammini, A., Menczer, F., Ciampaglia, G.L.: Finding streams in knowledge graphs to support fact checking. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 859–864. IEEE (2017)

    Google Scholar 

  37. Thakkar, D., Kumar, N., Sambasivan, N.: Towards an AI-powered future that works for vocational workers. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2020)

    Google Scholar 

  38. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning (2016)

    Google Scholar 

  39. Vidros, S., Kolias, C., Kambourakis, G., Akoglu, L.: Automatic detection of online recruitment frauds: characteristics, methods, and a public dataset. Future Internet 9(1), 6 (2017)

    Article  Google Scholar 

  40. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  41. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI (2014)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support from SERB, InfoEdge India Limited, and FICCI. We are grateful to PreCog Research Group and Dr. Siddartha Asthana for critically reviewing the manuscript and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Goyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goyal, N., Sachdeva, N., Kumaraguru, P. (2021). Spy the Lie: Fraudulent Jobs Detection in Recruitment Domain using Knowledge Graphs. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management . KSEM 2021. Lecture Notes in Computer Science(), vol 12816. Springer, Cham. https://doi.org/10.1007/978-3-030-82147-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82147-0_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82146-3

  • Online ISBN: 978-3-030-82147-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics