Abstract
In March 2020 the Spanish authorities ordered a nation-wide home confinement in an effort to avoid the spread of COVID-19 pandemic. This paper takes the current COVID-19 pandemic as motivation for a simple growth model designed for explaining virus propagation to children and was initially prepared in Scracth 3 for the son of the first author. The mathematical model used is that of fractal growth trees, which are graphically rendered in order to provide a strong visual message of the nature of exponential growth. The rendering is done in Maple’s Turtle Graphics package. This work is situated within a history of Turtle Geometry, starting with its beginnings in the classic Logo programming language, and describing how it fits within the current landscape of powerful software tools. The implementation within Maple is described, with relevant vignettes of code included. The complete Maple version of the tale is available from MaplePrimes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
All product names, trademarks and registered trademarks are property of their respective owners.
References
Faisst, S.: Propagation of viruses | Animal. In: Grano, A., Webster, R.G. (eds.) Encyclopedia of Virology, 2nd edn., pp. 1408–1413. Academic Press, San Diego (1999)
Abbelson, H., diSessa, A.: Turtle Geometry The Computer as a Medium for Exploring Mathematics. MIT Press, Cambridge (1981)
Instituto de Matemática Interdisciplinar (IMI) Other activities 2020. “Por qué quedarse en casa es bueno para evitar la propagación de un virus? Una explicación simplificada para jóvenes usando fractales y Scratch. Eugenio Roanes Lozano. Video y texto divulgativo. https://ucm.es/imi/other-activities-2020
ESCO 2020. https://www.esco2020.femhub.com/
Roanes-Lozano, E., Solano-Macías, C.: Using fractals and Turtle Geometry to visually explain the spread of a virus to kids: a STEM multitarget activity. Math. Comput. Sci. (2021). https://doi.org/10.1007/s11786-021-00500-9
Laita, L.M., Roanes-Lozano, E., Maojo, V., Roanes-Macias, E., de Ledesma, L., Laita, L.: An expert system for managing medical appropriateness criteria based on computer algebra techniques. Comp. Math. Appl. 42(12), 1505–1522 (2001). https://doi.org/10.1016/S0898-1221(01)00258-9
Pérez-Carretero, C., Laita, L.M., Roanes-Lozano, E., Lázaro, L., González-Cajal, J., Laita, L.: A logic and computer algebra-based expert system for diagnosis of anorexia. Math. Comput. Simul. 58(3), 183–202 (2002). https://doi.org/10.1016/S0378-4754(01)00370-6
Roanes-Lozano, E., González-Bermejo, A., Roanes-Macías, E., Cabezas, J.: An application of computer algebra to pharmacokinetics: the Bateman equation. SIAM Rev. 48(1), 133–146 (2016). https://doi.org/10.1137/050634074
Bernardin, L., et al.: Maple Programming Guide. Maplesoft, Waterloo Maple Inc., Waterloo, Canada (2020). https://www.maplesoft.com/documentation_center/maple2020/ProgrammingGuide.pdf
Maplesoft: Maple User Manual. Maplesoft, Waterloo Maple Inc., Waterloo, Canada (2020). https://www.maplesoft.com/documentation_center/maple2020/UserManual.pdf
Corless, R.: Essential Maple An Introduction for Scientific Programmers. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-3985-5
Heck, A.: Introduction to Maple. Springer, New York (2003). https://doi.org/10.1007/978-1-4613-0023-6
Roanes-Macías, E., Roanes-Lozano, E.: Cálculos Matemáticos por Ordenador con Maple V.5. Editorial Rubiños-1890, Madrid (1999)
Roanes-Lozano, E., Roanes-Macías, E.: An Implementation of “Turtle Graphics” in Maple V. MapleTech Special Issue, 82–85 (1994)
MaplePrimes. Why Staying at Home is Good to Avoid the Spread of a Virus? A tale of fractals, cats and virus. https://www.mapleprimes.com/posts/212674-Why-Staying-At-Home-Is-Good-To-Avoid
Roanes-Lozano, E., Roanes-Macías, E.: “Turtle Graphics” in Maple V. In: Lopez, R.J. (ed.) Maple V: Mathematics and Its Applications, pp. 3–12. Birkhäuser, Boston-Basel-Berlin (1994)
Smith, R.: Mathematical Modelling of Zombies. University of Ottawa Press (2014)
Abelson, H.: Logo for the Apple II. BYTE/McGraw-Hill, Peterborough (1980)
Wikipedia: Logo (programming language) https://en.wikipedia.org/wiki/Logo_(programming_language)#:~:text=Logo%20is%20an%20educational%20programming,logos%2C%20meaning%20word%20or%20thought
Papert, S.: Mindstorms: Children, Computers and Powerful Ideas. Basic Books, New York (1980)
Give’on, Y.S.: Teaching recursive programming using parallel multi-turtle graphics. Comput. Educ. 16/3, 267–280 (1991)
Goldman, R., Schaefer, S., Ju, T.: Turtle geometry in computer graphics and computer–aided design. Comp. Aid. Des. 36(14), 1471–1482 (2004)
Ju, T., Schaefer, S., Goldman, R.: Recursive turtle programs and iterated affine transformations. Comput. Graph. 28(6), 991–1004 (2004)
Trott, M.: Wolfram Demonstrations Project. Turtle-Graphics. http://demonstrations.wolfram.com/TurtleGraphics/
Shein, E.: Should everybody learn to code? Commun. ACM 57(2), 16–18 (2014)
https://www.wolfram.com/mathematica/index.html.es?footer=lang
Logo Tree. https://pavel.it.fmi.uni-sofia.bg/logotree/
FMSLogo: An Educational Programming Environment. http://fmslogo.sourceforge.net/
Resnick, M.: New paradigms for computing, new paradigms for thinking. In: diSessa, A., et al. (eds.) Computers and Exploratory Learning, pp. 31–43. NATO ASI Series, no. 146. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-57799-4_3
Introduction to StarLogo. https://education.mit.edu/project/starlogo-tng/
Wilensky, U.: NetLogo 5.0.5 User Manual. http://ccl.northwestern.edu/netlogo/docs/NetLogo%20User%20Manual.pdf
Cabezas, J., Hernández Encinas, L.: Geometría esférica en Logo. Gac. Mat. 1, 13–24 (1988)
Sims-Coomber, H., Martin, R.R.: An implementation of LOGO for elliptic geometry. Comput. Graph. 18(4), 543–552 (1994)
Sims-Coomber, H., Martin, R.R.: A non-Euclidean implementation of LOGO. Comput. Graph. 15(1), 117–130 (1991)
Neuwirth, E.: Turtle Ballet: Simulating Parallel Turtles in a Nonparallel LOGO Version. In Futschek, G. (ed.) European Logo conference Eurologo 2001, a turtle odyssey, pp. 263–270. Österreichische Computer Gesellschaft (2001)
Resnick, M.: Turtles, Termites, and Traffic Jams Explorations in Massively Parallel Microworlds. The MIT Press, Cambridge (1997)
Roanes-Lozano, E.: Geometría de la Tortuga con Scratch 2.0 y Enseñanza de Matemática Elemental. https://webs.ucm.es/info/secdealg/ApuntesLogo/INF_MATN_Scratch18-19_v11.pdf
Rachum, R.: PythonTurtle. http://pythonturtle.org/
The Haskell Programming Language. http://www.haskell.org/haskellwiki/Haskell
Boiten, E.: Turtle Graphics: Exercises in Haskell. Technical Report No. 11-04, University of Kent, Canterbury (2004)
Graphics.X11.Turtle. http://hackage.haskell.org/package/xturtle-0.1.5/docs/Graphics-X11-Turtle.html
Haas, G.M.: BFOIT. Introduction to Computer Programming. Java TurtleGraphics. http://guyhaas.com/bfoit/itp/JavaTurtleGraphics.html
Pencil Code Online Guide. http://guide.pencilcode.net/
Sancho, F.: NetProLogo. http://www.cs.us.es/~fsancho/?e=23
Wikipedia. LOGO. http://wiki.laptop.org/go/LOGO
Harvey, B.: Berkeley Logo (UCBLogo). http://www.cs.berkeley.edu/~bh/logo.html
Roanes-Lozano, E., Roanes-Macías, E.: Nuevas Tecnologías en Geometría. Complutense, Madrid (1994)
Anonymous. Turbo PROLOG the natural language of artificial intelligence. Borland Int. Inc., Scotts Valley, CA (1986)
Lechner, J., Roanes-Lozano, E., Roanes-Macías, E., Wiesenbauer, J.: An Implementation of “Turtle Graphics” in Derive 3. Bull. DERIVE User Group 25, 15–22 (1997)
C. Cotter. Turtle Graphics Interface for REDUCE Version 3. https://www.semanticscholar.org/paper/Turtle-Graphics-Interface-for-REDUCE-Version-3-Cotter/4be30e3d124eea67dec1dd70e640ab91aaa9fbbb
Kutzler, B, Stoutemyer, D.R.: Great TI-92 Programs (Vol. 1). bk teachware, Hagenberg, Austria (1997)
ticalc org project. TI-92 Turtle Graphics v1.0. http://www.ticalc.org/archives/files/fileinfo/13/1376.html
JTurtleLib. Java Turtle Graphics for Android. http://www.aplu.ch/home/apluhomex.jsp?site=123
Garbayo, M., Roanes-Lozano, E.: Implementación de un paquete de dibujo de rosetones (Grupos de Leonardo). Bol. Soc. “Puig Adam” 37, 87–96 (1994)
Garbayo, M., Roanes-Lozano, E.: Implementación de un paquete de dibujo de frisos. Bol. Soc. “Puig Adam” 40, 39–53 (1995)
Garbayo, M., Roanes-Lozano, E.: Implementación de un paquete de dibujo de grupos cristalográficos planos. Bol. Soc. “Puig Adam” 43, 71–77 (1996)
Garbayo, M., Roanes-Lozano, E.: Tort–decó: a “turtle geometry”–based package for drawing periodic designs. Math. Comp. Mod. 33, 321–340 (2001)
https://webs.ucm.es/info/secdealg/gato/Maple_Turtle_Virus_6.mw
Acknowledgments
Partially funded by the research project PGC2018–096509-B-100 (Government of Spain).
The authors would sincerely like to thank the anonymous reviewers of this article for their most valuable comments, which have greatly contributed to the improvement of this article.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Roanes-Lozano, E., Roanes-Macías, E. (2021). A Simplified Introduction to Virus Propagation Using Maple’s Turtle Graphics Package Suitable for Children. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds) Maple in Mathematics Education and Research. MC 2020. Communications in Computer and Information Science, vol 1414. Springer, Cham. https://doi.org/10.1007/978-3-030-81698-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-81698-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81697-1
Online ISBN: 978-3-030-81698-8
eBook Packages: Computer ScienceComputer Science (R0)