[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Simplified Introduction to Virus Propagation Using Maple’s Turtle Graphics Package Suitable for Children

  • Conference paper
  • First Online:
Maple in Mathematics Education and Research (MC 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1414))

Included in the following conference series:

  • 809 Accesses

Abstract

In March 2020 the Spanish authorities ordered a nation-wide home confinement in an effort to avoid the spread of COVID-19 pandemic. This paper takes the current COVID-19 pandemic as motivation for a simple growth model designed for explaining virus propagation to children and was initially prepared in Scracth 3 for the son of the first author. The mathematical model used is that of fractal growth trees, which are graphically rendered in order to provide a strong visual message of the nature of exponential growth. The rendering is done in Maple’s Turtle Graphics package. This work is situated within a history of Turtle Geometry, starting with its beginnings in the classic Logo programming language, and describing how it fits within the current landscape of powerful software tools. The implementation within Maple is described, with relevant vignettes of code included. The complete Maple version of the tale is available from MaplePrimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    All product names, trademarks and registered trademarks are property of their respective owners.

References

  1. Faisst, S.: Propagation of viruses | Animal. In: Grano, A., Webster, R.G. (eds.) Encyclopedia of Virology, 2nd edn., pp. 1408–1413. Academic Press, San Diego (1999)

    Chapter  Google Scholar 

  2. Abbelson, H., diSessa, A.: Turtle Geometry The Computer as a Medium for Exploring Mathematics. MIT Press, Cambridge (1981)

    MATH  Google Scholar 

  3. Instituto de Matemática Interdisciplinar (IMI) Other activities 2020. “Por qué quedarse en casa es bueno para evitar la propagación de un virus? Una explicación simplificada para jóvenes usando fractales y Scratch. Eugenio Roanes Lozano. Video y texto divulgativo. https://ucm.es/imi/other-activities-2020

  4. ESCO 2020. https://www.esco2020.femhub.com/

  5. Roanes-Lozano, E., Solano-Macías, C.: Using fractals and Turtle Geometry to visually explain the spread of a virus to kids: a STEM multitarget activity. Math. Comput. Sci. (2021). https://doi.org/10.1007/s11786-021-00500-9

  6. Laita, L.M., Roanes-Lozano, E., Maojo, V., Roanes-Macias, E., de Ledesma, L., Laita, L.: An expert system for managing medical appropriateness criteria based on computer algebra techniques. Comp. Math. Appl. 42(12), 1505–1522 (2001). https://doi.org/10.1016/S0898-1221(01)00258-9

  7. Pérez-Carretero, C., Laita, L.M., Roanes-Lozano, E., Lázaro, L., González-Cajal, J., Laita, L.: A logic and computer algebra-based expert system for diagnosis of anorexia. Math. Comput. Simul. 58(3), 183–202 (2002). https://doi.org/10.1016/S0378-4754(01)00370-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Roanes-Lozano, E., González-Bermejo, A., Roanes-Macías, E., Cabezas, J.: An application of computer algebra to pharmacokinetics: the Bateman equation. SIAM Rev. 48(1), 133–146 (2016). https://doi.org/10.1137/050634074

    Article  MathSciNet  MATH  Google Scholar 

  9. https://www.maplesoft.com/products/Maple/

  10. Bernardin, L., et al.: Maple Programming Guide. Maplesoft, Waterloo Maple Inc., Waterloo, Canada (2020). https://www.maplesoft.com/documentation_center/maple2020/ProgrammingGuide.pdf

  11. Maplesoft: Maple User Manual. Maplesoft, Waterloo Maple Inc., Waterloo, Canada (2020). https://www.maplesoft.com/documentation_center/maple2020/UserManual.pdf

  12. Corless, R.: Essential Maple An Introduction for Scientific Programmers. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-3985-5

    Book  MATH  Google Scholar 

  13. Heck, A.: Introduction to Maple. Springer, New York (2003). https://doi.org/10.1007/978-1-4613-0023-6

    Book  MATH  Google Scholar 

  14. Roanes-Macías, E., Roanes-Lozano, E.: Cálculos Matemáticos por Ordenador con Maple V.5. Editorial Rubiños-1890, Madrid (1999)

    Google Scholar 

  15. Roanes-Lozano, E., Roanes-Macías, E.: An Implementation of “Turtle Graphics” in Maple V. MapleTech Special Issue, 82–85 (1994)

    Google Scholar 

  16. MaplePrimes. Why Staying at Home is Good to Avoid the Spread of a Virus? A tale of fractals, cats and virus. https://www.mapleprimes.com/posts/212674-Why-Staying-At-Home-Is-Good-To-Avoid

  17. Roanes-Lozano, E., Roanes-Macías, E.: “Turtle Graphics” in Maple V. In: Lopez, R.J. (ed.) Maple V: Mathematics and Its Applications, pp. 3–12. Birkhäuser, Boston-Basel-Berlin (1994)

    Google Scholar 

  18. Smith, R.: Mathematical Modelling of Zombies. University of Ottawa Press (2014)

    Google Scholar 

  19. Abelson, H.: Logo for the Apple II. BYTE/McGraw-Hill, Peterborough (1980)

    Google Scholar 

  20. Wikipedia: Logo (programming language) https://en.wikipedia.org/wiki/Logo_(programming_language)#:~:text=Logo%20is%20an%20educational%20programming,logos%2C%20meaning%20word%20or%20thought

  21. Papert, S.: Mindstorms: Children, Computers and Powerful Ideas. Basic Books, New York (1980)

    Google Scholar 

  22. Give’on, Y.S.: Teaching recursive programming using parallel multi-turtle graphics. Comput. Educ. 16/3, 267–280 (1991)

    Google Scholar 

  23. Goldman, R., Schaefer, S., Ju, T.: Turtle geometry in computer graphics and computer–aided design. Comp. Aid. Des. 36(14), 1471–1482 (2004)

    Article  Google Scholar 

  24. Ju, T., Schaefer, S., Goldman, R.: Recursive turtle programs and iterated affine transformations. Comput. Graph. 28(6), 991–1004 (2004)

    Article  Google Scholar 

  25. Trott, M.: Wolfram Demonstrations Project. Turtle-Graphics. http://demonstrations.wolfram.com/TurtleGraphics/

  26. Shein, E.: Should everybody learn to code? Commun. ACM 57(2), 16–18 (2014)

    Article  Google Scholar 

  27. https://scratch.mit.edu/

  28. https://snap.berkeley.edu/

  29. https://www.wolfram.com/mathematica/index.html.es?footer=lang

  30. Logo Tree. https://pavel.it.fmi.uni-sofia.bg/logotree/

  31. FMSLogo: An Educational Programming Environment. http://fmslogo.sourceforge.net/

  32. Resnick, M.: New paradigms for computing, new paradigms for thinking. In: diSessa, A., et al. (eds.) Computers and Exploratory Learning, pp. 31–43. NATO ASI Series, no. 146. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-57799-4_3

  33. Introduction to StarLogo. https://education.mit.edu/project/starlogo-tng/

  34. Wilensky, U.: NetLogo 5.0.5 User Manual. http://ccl.northwestern.edu/netlogo/docs/NetLogo%20User%20Manual.pdf

  35. Cabezas, J., Hernández Encinas, L.: Geometría esférica en Logo. Gac. Mat. 1, 13–24 (1988)

    Google Scholar 

  36. Sims-Coomber, H., Martin, R.R.: An implementation of LOGO for elliptic geometry. Comput. Graph. 18(4), 543–552 (1994)

    Article  Google Scholar 

  37. Sims-Coomber, H., Martin, R.R.: A non-Euclidean implementation of LOGO. Comput. Graph. 15(1), 117–130 (1991)

    Article  Google Scholar 

  38. Neuwirth, E.: Turtle Ballet: Simulating Parallel Turtles in a Nonparallel LOGO Version. In Futschek, G. (ed.) European Logo conference Eurologo 2001, a turtle odyssey, pp. 263–270. Österreichische Computer Gesellschaft (2001)

    Google Scholar 

  39. Resnick, M.: Turtles, Termites, and Traffic Jams Explorations in Massively Parallel Microworlds. The MIT Press, Cambridge (1997)

    Google Scholar 

  40. Roanes-Lozano, E.: Geometría de la Tortuga con Scratch 2.0 y Enseñanza de Matemática Elemental. https://webs.ucm.es/info/secdealg/ApuntesLogo/INF_MATN_Scratch18-19_v11.pdf

  41. Rachum, R.: PythonTurtle. http://pythonturtle.org/

  42. The Haskell Programming Language. http://www.haskell.org/haskellwiki/Haskell

  43. Boiten, E.: Turtle Graphics: Exercises in Haskell. Technical Report No. 11-04, University of Kent, Canterbury (2004)

    Google Scholar 

  44. Graphics.X11.Turtle. http://hackage.haskell.org/package/xturtle-0.1.5/docs/Graphics-X11-Turtle.html

  45. Haas, G.M.: BFOIT. Introduction to Computer Programming. Java TurtleGraphics. http://guyhaas.com/bfoit/itp/JavaTurtleGraphics.html

  46. Pencil Code Online Guide. http://guide.pencilcode.net/

  47. Sancho, F.: NetProLogo. http://www.cs.us.es/~fsancho/?e=23

  48. Wikipedia. LOGO. http://wiki.laptop.org/go/LOGO

  49. Harvey, B.: Berkeley Logo (UCBLogo). http://www.cs.berkeley.edu/~bh/logo.html

  50. Roanes-Lozano, E., Roanes-Macías, E.: Nuevas Tecnologías en Geometría. Complutense, Madrid (1994)

    Google Scholar 

  51. Anonymous. Turbo PROLOG the natural language of artificial intelligence. Borland Int. Inc., Scotts Valley, CA (1986)

    Google Scholar 

  52. Lechner, J., Roanes-Lozano, E., Roanes-Macías, E., Wiesenbauer, J.: An Implementation of “Turtle Graphics” in Derive 3. Bull. DERIVE User Group 25, 15–22 (1997)

    Google Scholar 

  53. C. Cotter. Turtle Graphics Interface for REDUCE Version 3. https://www.semanticscholar.org/paper/Turtle-Graphics-Interface-for-REDUCE-Version-3-Cotter/4be30e3d124eea67dec1dd70e640ab91aaa9fbbb

  54. Kutzler, B, Stoutemyer, D.R.: Great TI-92 Programs (Vol. 1). bk teachware, Hagenberg, Austria (1997)

    Google Scholar 

  55. ticalc org project. TI-92 Turtle Graphics v1.0. http://www.ticalc.org/archives/files/fileinfo/13/1376.html

  56. https://www.geogebra.org/m/RSaep6ne#material/reSARTjy

  57. JTurtleLib. Java Turtle Graphics for Android. http://www.aplu.ch/home/apluhomex.jsp?site=123

  58. Garbayo, M., Roanes-Lozano, E.: Implementación de un paquete de dibujo de rosetones (Grupos de Leonardo). Bol. Soc. “Puig Adam” 37, 87–96 (1994)

    Google Scholar 

  59. Garbayo, M., Roanes-Lozano, E.: Implementación de un paquete de dibujo de frisos. Bol. Soc. “Puig Adam” 40, 39–53 (1995)

    Google Scholar 

  60. Garbayo, M., Roanes-Lozano, E.: Implementación de un paquete de dibujo de grupos cristalográficos planos. Bol. Soc. “Puig Adam” 43, 71–77 (1996)

    Google Scholar 

  61. Garbayo, M., Roanes-Lozano, E.: Tort–decó: a “turtle geometry”–based package for drawing periodic designs. Math. Comp. Mod. 33, 321–340 (2001)

    Article  Google Scholar 

  62. https://webs.ucm.es/info/secdealg/gato/turtle2021.mpl

  63. https://webs.ucm.es/info/secdealg/gato/Maple_Turtle_Virus_6.mw

Download references

Acknowledgments

Partially funded by the research project PGC2018–096509-B-100 (Government of Spain).

The authors would sincerely like to thank the anonymous reviewers of this article for their most valuable comments, which have greatly contributed to the improvement of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Roanes-Lozano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roanes-Lozano, E., Roanes-Macías, E. (2021). A Simplified Introduction to Virus Propagation Using Maple’s Turtle Graphics Package Suitable for Children. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds) Maple in Mathematics Education and Research. MC 2020. Communications in Computer and Information Science, vol 1414. Springer, Cham. https://doi.org/10.1007/978-3-030-81698-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81698-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81697-1

  • Online ISBN: 978-3-030-81698-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics