[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

GCN-Calculated Graph-Feature Embedding for 3D Endoscopic System Based on Active Stereo

  • Conference paper
  • First Online:
Frontiers of Computer Vision (IW-FCV 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1405))

Included in the following conference series:

Abstract

One of the promising fields for active-stereo sensors is medical applications such as 3D endoscope systems. For such systems, robust correspondence estimation between the detected patterns and the projected pattern is the most crucial. In this paper, we propose an auto-calibrating 3D endoscopic system using a 2D grid-graph pattern, where codes are embedded into each grid point. Since the pattern is a grid graph, we use a graph convolutional network (GCN) to calculate node-wise embedding accumulating code information of nearby grid points in the graph. The correspondence estimation using the GCN-calculated feature embedding is shown to be stable, even without using epipolar constraints. Using the correspondence estimation, we show that the auto-calibrating 3D measurement system can be realized. In the experiment, we confirmed that the proposed system achieved high accuracy and robust estimation comparing to the previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  2. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Comput. Vision 70(1), 41–54 (2006)

    Article  Google Scholar 

  3. Furukawa, R., et al.: Simultaneous shape and camera-projector parameter estimation for 3D endoscopic system using CNN-based grid-oneshot scan. Healthcare Technol. Lett. 6(6), 249–254 (2019)

    Article  Google Scholar 

  4. Furukawa, R., et al.: 2-DOF auto-calibration for a 3d endoscope system based on active stereo. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7937–7941. IEEE (2015)

    Google Scholar 

  5. Furukawa, R., Mizomori, M., Hiura, S., Oka, S., Tanaka, S., Kawasaki, H.: Wide-area shape reconstruction by 3D endoscopic system based on CNN decoding, shape registration and fusion. In: Stoyanov, D., et al. (eds.) CARE/CLIP/OR 2.0/ISIC -2018. LNCS, vol. 11041, pp. 139–150. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01201-4_16

    Chapter  Google Scholar 

  6. Furukawa, R., Morinaga, H., Sanomura, Y., Tanaka, S., Yoshida, S., Kawasaki, H.: Shape acquisition and registration for 3d endoscope based on grid pattern projection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 399–415. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_24

    Chapter  Google Scholar 

  7. Furukawa, R., et al.: Fully auto-calibrated active-stereo-based 3d endoscopic system using correspondence estimation with graph convolutional network, vol. 2020, pp. 4357–4360 (2020). https://doi.org/10.1109/EMBC44109.2020.9176417

  8. Geurten, J., Xia, W., Jayarathne, U., Peters, T.M., Chen, E.C.S.: Endoscopic laser surface scanner for minimally invasive abdominal surgeries. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 143–150. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_17

    Chapter  Google Scholar 

  9. Kawasaki, H., Furukawa, R., Sagawa, R., Yagi, Y.: Dynamic scene shape reconstruction using a single structured light pattern. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  10. Liu, X., et al.: Self-supervised learning for dense depth estimation in monocular endoscopy. In: Stoyanov, D., et al. (eds.) CARE/CLIP/OR 2.0/ISIC -2018. LNCS, vol. 11041, pp. 128–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01201-4_15

    Chapter  Google Scholar 

  11. Ma, R., Wang, R., Pizer, S., Rosenman, J., McGill, S.K., Frahm, J.-M.: Real-time 3D reconstruction of Colonoscopic surfaces for determining missing regions. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 573–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_64

    Chapter  Google Scholar 

  12. Mahmood, F., Chen, R., Durr, N.J.: Unsupervised reverse domain adaptation for synthetic medical images via adversarial training. IEEE Trans. Med. Imaging 37(12), 2572–2581 (2018)

    Article  Google Scholar 

  13. Mahmood, F., Durr, N.J.: Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Med. Image Anal. 48, 230–243 (2018)

    Article  Google Scholar 

  14. Maurice, X., Albitar, C., Doignon, C., de Mathelin, M.: A structured light-based laparoscope with real-time organs’ surface reconstruction for minimally invasive surgery. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5769–5772. IEEE (2012)

    Google Scholar 

  15. Nagakura, T., Michida, T., Hirao, M., Kawahara, K., Yamada, K.: The study of three-dimensional measurement from an endoscopic images with stereo matching method. In: 2006 World Automation Congress, pp. 1–4. IEEE (2006)

    Google Scholar 

  16. Rau, A., et al.: Implicit domain adaptation with conditional generative adversarial networks for depth prediction in endoscopy. Int. J. Comput. Assist. Radiol. Surg. 14(7), 1167–1176 (2019). https://doi.org/10.1007/s11548-019-01962-w

    Article  Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Salvi, J., Pages, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recogn. 37(4), 827–849 (2004)

    Article  Google Scholar 

  19. Schmalz, C., Forster, F., Schick, A., Angelopoulou, E.: An endoscopic 3D scanner based on structured light. Med. Image Anal. 16(5), 1063–1072 (2012)

    Article  Google Scholar 

  20. Song, L., Tang, S., Song, Z.: A robust structured light pattern decoding method for single-shot 3D reconstruction. In: 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR), pp. 668–672. IEEE (2017)

    Google Scholar 

  21. Stoyanov, D., Scarzanella, M.V., Pratt, P., Yang, G.-Z.: Real-time stereo reconstruction in robotically assisted minimally invasive surgery. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 275–282. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15705-9_34

    Chapter  Google Scholar 

  22. Visentini-Scarzanella, M., Sugiura, T., Kaneko, T., Koto, S.: Deep monocular 3D reconstruction for assisted navigation in bronchoscopy. Int. J. Comput. Assist. Radiol. Surg. 12(7), 1089–1099 (2017)

    Article  Google Scholar 

  23. Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361 (2015)

    Google Scholar 

  24. Žbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res. 17(1), 2287–2318 (2016)

    MATH  Google Scholar 

  25. Zhang, L., Curless, B., Seitz, S.M.: Rapid shape acquisition using color structured light and multi-pass dynamic programming. In: Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission, pp. 24–36. IEEE (2002)

    Google Scholar 

  26. Zhang, Z.: Microsoft Kinect sensor and its effect. IEEE MultiMedia 19, 4–12 (2012). https://www.microsoft.com/en-us/research/publication/microsoft-kinect-sensor-and-its-effect/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihiro Mikamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mikamo, M., Kawasaki, H., Sagawa, R., Furukawa, R. (2021). GCN-Calculated Graph-Feature Embedding for 3D Endoscopic System Based on Active Stereo. In: Jeong, H., Sumi, K. (eds) Frontiers of Computer Vision. IW-FCV 2021. Communications in Computer and Information Science, vol 1405. Springer, Cham. https://doi.org/10.1007/978-3-030-81638-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81638-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81637-7

  • Online ISBN: 978-3-030-81638-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics