Abstract
Empirical studies have shown that in many practical problems, out of all symmetric membership functions, special distending functions work best, and out of all hedge operations and negation operations, fractional linear ones work the best. In this paper, we show that these empirical successes can be explained by natural invariance requirements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
R. Belohlavek, J.W. Dauben, G.J. Klir, Fuzzy Logic and Mathematics: A Historical Perspective (Oxford University Press, New York, 2017)
O. Csiszar, J. Dombi, in Generator-Based Modifiers and Membership Functions in Nilpotent Operator Systems, vol. 3–5, (Budapest, Hungary, 2019), pp. 99–105
J. Dombi, O. Csiszar, Implications in bounded systems. Inf. Sci. 283, 229–240 (2014)
J. Dombi, O. Csiszar, The general nilpotent operator system. Fuzzy Sets Syst. 261, 1–19 (2015)
J. Dombi, O. Csiszar, Equivalence operators in nilpotent systems. Fuzzy Sets Syst. 299, 113–129 (2016)
J. Dombi, T. Szépe, Arithmetic-based fuzzy control. Iran. J. Fuzzy Syst. 14(4), 51–66 (2017)
J. Dombi, A. Hussain, in Interval Type-2 Fuzzy Control Using the Distending Function, vol. 18–21, ed. by A.J. Tallón-Ballesteros (Kitakyushu, Japan, 2019), pp. 705–714
J. Dombi, A. Hussain, in Data-Driven Arithmetic Fuzzy Control Using the Distending Function, vol. 22–24, (Nice, France, 2019), pp. 215–221
J. Dombi, A. Hussain, A new approach to fuzzy control using the distending function. J. Process Control 86, 16–29 (2020)
V.M. Guillemin, S. Sternberg, An algebraic model of transitive differential geometry. Bull. Am. Math. Soc. 70(1), 16–47 (1964)
G. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic (Prentice Hall, Upper Saddle River, New Jersey, 1995)
J.M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions (Springer, Cham, Switzerland, 2017)
H.T. Nguyen, V. Kreinovich, Applications of Continuous Mathematics to Computer Science (Kluwer, Dordrecht, 1997)
H.T. Nguyen, C.L. Walker, E.A. Walker, A First Course in Fuzzy Logic (Chapman and Hall/CRC, Boca Raton, Florida, 2019)
V. Novák, I. Perfilieva, J. Močkoř, Mathematical Principles of Fuzzy Logic (Kluwer, Boston, Dordrecht, 1999)
I.M. Singer, S. Sternberg, Infinite groupsof Lie and Cartan, Part I. J. d’Analyse Math. 15, 1–113 (1965)
L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)
Acknowledgements
This work was supported in part by the grant TUDFO/47138-1/2019-ITM from the Ministry of Technology and Innovation, Hungary, and by the US National Science Foundation grants 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science) and HRD-1242122 (Cyber-ShARE Center of Excellence).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Urenda, J.C., Csiszár, O., Csiszár, G., Dombi, J., Eigner, G., Kreinovich, V. (2022). Natural Invariance Explains Empirical Success of Specific Membership Functions, Hedge Operations, and Negation Operations. In: Bede, B., Ceberio, M., De Cock, M., Kreinovich, V. (eds) Fuzzy Information Processing 2020. NAFIPS 2020. Advances in Intelligent Systems and Computing, vol 1337. Springer, Cham. https://doi.org/10.1007/978-3-030-81561-5_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-81561-5_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81560-8
Online ISBN: 978-3-030-81561-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)