[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Natural Invariance Explains Empirical Success of Specific Membership Functions, Hedge Operations, and Negation Operations

  • Conference paper
  • First Online:
Fuzzy Information Processing 2020 (NAFIPS 2020)

Abstract

Empirical studies have shown that in many practical problems, out of all symmetric membership functions, special distending functions work best, and out of all hedge operations and negation operations, fractional linear ones work the best. In this paper, we show that these empirical successes can be explained by natural invariance requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Belohlavek, J.W. Dauben, G.J. Klir, Fuzzy Logic and Mathematics: A Historical Perspective (Oxford University Press, New York, 2017)

    Book  Google Scholar 

  2. O. Csiszar, J. Dombi, in Generator-Based Modifiers and Membership Functions in Nilpotent Operator Systems, vol. 3–5, (Budapest, Hungary, 2019), pp. 99–105

    Google Scholar 

  3. J. Dombi, O. Csiszar, Implications in bounded systems. Inf. Sci. 283, 229–240 (2014)

    Article  MathSciNet  Google Scholar 

  4. J. Dombi, O. Csiszar, The general nilpotent operator system. Fuzzy Sets Syst. 261, 1–19 (2015)

    Article  MathSciNet  Google Scholar 

  5. J. Dombi, O. Csiszar, Equivalence operators in nilpotent systems. Fuzzy Sets Syst. 299, 113–129 (2016)

    Article  MathSciNet  Google Scholar 

  6. J. Dombi, T. Szépe, Arithmetic-based fuzzy control. Iran. J. Fuzzy Syst. 14(4), 51–66 (2017)

    MathSciNet  MATH  Google Scholar 

  7. J. Dombi, A. Hussain, in Interval Type-2 Fuzzy Control Using the Distending Function, vol. 18–21, ed. by A.J. Tallón-Ballesteros (Kitakyushu, Japan, 2019), pp. 705–714

    Google Scholar 

  8. J. Dombi, A. Hussain, in Data-Driven Arithmetic Fuzzy Control Using the Distending Function, vol. 22–24, (Nice, France, 2019), pp. 215–221

    Google Scholar 

  9. J. Dombi, A. Hussain, A new approach to fuzzy control using the distending function. J. Process Control 86, 16–29 (2020)

    Article  Google Scholar 

  10. V.M. Guillemin, S. Sternberg, An algebraic model of transitive differential geometry. Bull. Am. Math. Soc. 70(1), 16–47 (1964)

    Article  MathSciNet  Google Scholar 

  11. G. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic (Prentice Hall, Upper Saddle River, New Jersey, 1995)

    MATH  Google Scholar 

  12. J.M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions (Springer, Cham, Switzerland, 2017)

    Book  Google Scholar 

  13. H.T. Nguyen, V. Kreinovich, Applications of Continuous Mathematics to Computer Science (Kluwer, Dordrecht, 1997)

    Book  Google Scholar 

  14. H.T. Nguyen, C.L. Walker, E.A. Walker, A First Course in Fuzzy Logic (Chapman and Hall/CRC, Boca Raton, Florida, 2019)

    MATH  Google Scholar 

  15. V. Novák, I. Perfilieva, J. Močkoř, Mathematical Principles of Fuzzy Logic (Kluwer, Boston, Dordrecht, 1999)

    Book  Google Scholar 

  16. I.M. Singer, S. Sternberg, Infinite groupsof Lie and Cartan, Part I. J. d’Analyse Math. 15, 1–113 (1965)

    Article  MathSciNet  Google Scholar 

  17. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the grant TUDFO/47138-1/2019-ITM from the Ministry of Technology and Innovation, Hungary, and by the US National Science Foundation grants 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science) and HRD-1242122 (Cyber-ShARE Center of Excellence).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio C. Urenda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Urenda, J.C., Csiszár, O., Csiszár, G., Dombi, J., Eigner, G., Kreinovich, V. (2022). Natural Invariance Explains Empirical Success of Specific Membership Functions, Hedge Operations, and Negation Operations. In: Bede, B., Ceberio, M., De Cock, M., Kreinovich, V. (eds) Fuzzy Information Processing 2020. NAFIPS 2020. Advances in Intelligent Systems and Computing, vol 1337. Springer, Cham. https://doi.org/10.1007/978-3-030-81561-5_41

Download citation

Publish with us

Policies and ethics