Abstract
The performance of any search engine, social media word processor depends deeply on the spelling checkers, grammar checkers etc. Spelling checker is the application used to correct the spelling mistakes done by users unintentionally. The minimum edit distance is one of the string-matching algorithms used in various applications like text mining, spell checking, bioinformatics and so on. In this paper, we proposed the minimum edit distance algorithm (MED) which correct the spelling mistakes in Marathi language text. It corrects the spelling errors by performing various operations like substitution, insertion, and deletion of characters. The algorithm detects non-word spelling errors and generates a suitable suggestion set for misspelled words by matching them with the corpus. While doing this, the misspelled word length is a key component to searching in the corpus so that, the searching complexity is minimum. In this paper, we have implemented a minimum edit distance algorithm and evaluated their performance with accuracy measure. The accuracy of the system is 85.5%. The performance of this algorithm is evaluated by suggestion generation accuracy for given misspelled words.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kukich, K.: Techniques for automatically correcting words in text. ACM Comput. Surv. 24(4), 377–439 (1992)
Nejja, M., Yousfi, A.: The context in automatic spell correction. In: The International Conference on Advanced Wireless, Information, and Communication Technologies (AWICT), vol. 73, pp. 109–114 (2015)
Hall, P.A.V., Dowling, G.R.: Approximate string matching. Comput. Surveys 12, 381–402 (1980)
Putra, M.E.W., Suwardi, I.S.: Structural off-line handwriting character recognition using approximate subgraph matching and Levenshtein distance. Procedia Comput. Sci. 59, 340–349 (2015)
Damerau, F.J.: A technique for computer detection and correction of spelling errors. Communications of the Association for Computing Machinery (1964)
Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and reversals. SOL Phys Dokl, 707–710 (1966)
Oflazer, K.: Error-tolerant finite-state recognition with applications to morphological analysis and spelling correction. Comput. Linguistics Archive 22(1), 73–89 (1996)
Savary: Recensement et description des mots composés–méthodes et applications, version 1, 24 September 2011, 149–158 (2000)
Pollock, J.J., Zamora, A.: Automatic spelling correction in scientific and scholarly text. Commun. ACM 27(4), 358–368 (1984)
Ndiaye, M., Faltin, A.V.: Correcteur Orthographique Adapté à Apprentissage du Français. Revue Bulag (29), 117–134 (2004)
SOUQUE: Approche critique des produits IdL:analyse comparative des correcteurs orthographiques de Word 2000 et OpenOffice 2. Master 1 Industries de la Langue, Université Stendhal-Grenoble 3 (2006)
Mitton, R.: Ordering the suggestions of a spellchecker without using context. Nat. Lang. Eng. 15(2), 173–192 (2009)
Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)
Shannon, C.E.: Prediction and entropy of printed English. Bell Sys. Tec. J. 30, 50–64 (1951)
Hodge, J., Austin, J.: A comparison of standard spell-checking algorithms and novel binary neural approach. IEEE Trans. Know. Dat. Eng. 15(5), 1073–1081 (2003)
Desai, N., Narvekar, M.: Normalization of noisy text data. In: International Conference on Advanced Computing Technologies and Applications (ICACTA), vol. 45, 127-132 (2015)
Mary, R., Nishikant, A.S., Iyengar, N.C.S.: Use of edit distance algorithm to search a keyword in cloud environment. Int. J. Database Theor. Appl. 7(6), 223–232 (2014)
Nejja, M., Yousfi, A.: The context in automatic spell correction. In: The International Conference on Advanced Wireless, Information, and Communication Technologies (AWICT), vol. 73, 109–114 (2015)
Awny, S., Amal, A.M.: IBRI-CASONTO: ontology-based semantic search engine. Egypt. Inf. J. 18, 181–192 (2017)
Yao, Z.: Implementation of the autocomplete feature of the textbox based on Ajax and web service. J. Comput. 9(8), 2197–2203 (2013)
Rubio, M.: A consensus algorithm for approximate string matching. In: Iberoamerican Conference on Electronics Engineering and Computer Science, vol. 7, 322-327 (2015)
Umar, R., Hendriana, Y., Budiyono, E.: Implementation of Levenshtein distance algorithm for E-Commerce of bravoisitees distro. Int. J. Comput. Trends Technol. (IJCTT). 27(3), 131–136 (2015)
http://www.tdil.dc.in/index.php?option=com_download&task=fsearch&Itemid=547&lang=en. Accessed 05 Marc, 2019
https://code.google.com/archive/p/hunspell-marathidictionary/downloads. Accessed 18 November 2020
Arun, P.: Marathi Lekhan Kosh, p. 2001. Keshav Bhikaji Dhavale Publishers, Mumbai (2001)
Forum for Information Retrieval (FIRE), Information Retrieval Society of India 12, 2–4, Mumbai, Maharashtra, India. http://www.isical.ac.in/~fire/2010/index.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Patil, K., Bhavsar, R.P., Pawar, B.V. (2021). Spelling Checking and Error Corrector System for Marathi Language Text Using Minimum Edit Distance Algorithm. In: Singh, M., Tyagi, V., Gupta, P.K., Flusser, J., Ören, T., Sonawane, V.R. (eds) Advances in Computing and Data Sciences. ICACDS 2021. Communications in Computer and Information Science, vol 1440. Springer, Cham. https://doi.org/10.1007/978-3-030-81462-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-81462-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81461-8
Online ISBN: 978-3-030-81462-5
eBook Packages: Computer ScienceComputer Science (R0)