[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Spelling Checking and Error Corrector System for Marathi Language Text Using Minimum Edit Distance Algorithm

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1440))

Included in the following conference series:

  • 1057 Accesses

Abstract

The performance of any search engine, social media word processor depends deeply on the spelling checkers, grammar checkers etc. Spelling checker is the application used to correct the spelling mistakes done by users unintentionally. The minimum edit distance is one of the string-matching algorithms used in various applications like text mining, spell checking, bioinformatics and so on. In this paper, we proposed the minimum edit distance algorithm (MED) which correct the spelling mistakes in Marathi language text. It corrects the spelling errors by performing various operations like substitution, insertion, and deletion of characters. The algorithm detects non-word spelling errors and generates a suitable suggestion set for misspelled words by matching them with the corpus. While doing this, the misspelled word length is a key component to searching in the corpus so that, the searching complexity is minimum. In this paper, we have implemented a minimum edit distance algorithm and evaluated their performance with accuracy measure. The accuracy of the system is 85.5%. The performance of this algorithm is evaluated by suggestion generation accuracy for given misspelled words.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kukich, K.: Techniques for automatically correcting words in text. ACM Comput. Surv. 24(4), 377–439 (1992)

    Article  Google Scholar 

  2. Nejja, M., Yousfi, A.: The context in automatic spell correction. In: The International Conference on Advanced Wireless, Information, and Communication Technologies (AWICT), vol. 73, pp. 109–114 (2015)

    Google Scholar 

  3. Hall, P.A.V., Dowling, G.R.: Approximate string matching. Comput. Surveys 12, 381–402 (1980)

    Article  MathSciNet  Google Scholar 

  4. Putra, M.E.W., Suwardi, I.S.: Structural off-line handwriting character recognition using approximate subgraph matching and Levenshtein distance. Procedia Comput. Sci. 59, 340–349 (2015)

    Article  Google Scholar 

  5. Damerau, F.J.: A technique for computer detection and correction of spelling errors. Communications of the Association for Computing Machinery (1964)

    Google Scholar 

  6. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and reversals. SOL Phys Dokl, 707–710 (1966)

    Google Scholar 

  7. Oflazer, K.: Error-tolerant finite-state recognition with applications to morphological analysis and spelling correction. Comput. Linguistics Archive 22(1), 73–89 (1996)

    Google Scholar 

  8. Savary: Recensement et description des mots composés–méthodes et applications, version 1, 24 September 2011, 149–158 (2000)

    Google Scholar 

  9. Pollock, J.J., Zamora, A.: Automatic spelling correction in scientific and scholarly text. Commun. ACM 27(4), 358–368 (1984)

    Article  Google Scholar 

  10. Ndiaye, M., Faltin, A.V.: Correcteur Orthographique Adapté à Apprentissage du Français. Revue Bulag (29), 117–134 (2004)

    Google Scholar 

  11. SOUQUE: Approche critique des produits IdL:analyse comparative des correcteurs orthographiques de Word 2000 et OpenOffice 2. Master 1 Industries de la Langue, Université Stendhal-Grenoble 3 (2006)

    Google Scholar 

  12. Mitton, R.: Ordering the suggestions of a spellchecker without using context. Nat. Lang. Eng. 15(2), 173–192 (2009)

    Google Scholar 

  13. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)

    Google Scholar 

  14. Shannon, C.E.: Prediction and entropy of printed English. Bell Sys. Tec. J. 30, 50–64 (1951)

    Article  Google Scholar 

  15. Hodge, J., Austin, J.: A comparison of standard spell-checking algorithms and novel binary neural approach. IEEE Trans. Know. Dat. Eng. 15(5), 1073–1081 (2003)

    Google Scholar 

  16. Desai, N., Narvekar, M.: Normalization of noisy text data. In: International Conference on Advanced Computing Technologies and Applications (ICACTA), vol. 45, 127-132 (2015)

    Google Scholar 

  17. Mary, R., Nishikant, A.S., Iyengar, N.C.S.: Use of edit distance algorithm to search a keyword in cloud environment. Int. J. Database Theor. Appl. 7(6), 223–232 (2014)

    Google Scholar 

  18. Nejja, M., Yousfi, A.: The context in automatic spell correction. In: The International Conference on Advanced Wireless, Information, and Communication Technologies (AWICT), vol. 73, 109–114 (2015)

    Google Scholar 

  19. Awny, S., Amal, A.M.: IBRI-CASONTO: ontology-based semantic search engine. Egypt. Inf. J. 18, 181–192 (2017)

    Google Scholar 

  20. Yao, Z.: Implementation of the autocomplete feature of the textbox based on Ajax and web service. J. Comput. 9(8), 2197–2203 (2013)

    Google Scholar 

  21. Rubio, M.: A consensus algorithm for approximate string matching. In: Iberoamerican Conference on Electronics Engineering and Computer Science, vol. 7, 322-327 (2015)

    Google Scholar 

  22. Umar, R., Hendriana, Y., Budiyono, E.: Implementation of Levenshtein distance algorithm for E-Commerce of bravoisitees distro. Int. J. Comput. Trends Technol. (IJCTT). 27(3), 131–136 (2015)

    Google Scholar 

  23. http://www.tdil.dc.in/index.php?option=com_download&task=fsearch&Itemid=547&lang=en. Accessed 05 Marc, 2019

  24. https://code.google.com/archive/p/hunspell-marathidictionary/downloads. Accessed 18 November 2020

  25. Arun, P.: Marathi Lekhan Kosh, p. 2001. Keshav Bhikaji Dhavale Publishers, Mumbai (2001)

    Google Scholar 

  26. Forum for Information Retrieval (FIRE), Information Retrieval Society of India 12, 2–4, Mumbai, Maharashtra, India. http://www.isical.ac.in/~fire/2010/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patil, K., Bhavsar, R.P., Pawar, B.V. (2021). Spelling Checking and Error Corrector System for Marathi Language Text Using Minimum Edit Distance Algorithm. In: Singh, M., Tyagi, V., Gupta, P.K., Flusser, J., Ören, T., Sonawane, V.R. (eds) Advances in Computing and Data Sciences. ICACDS 2021. Communications in Computer and Information Science, vol 1440. Springer, Cham. https://doi.org/10.1007/978-3-030-81462-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81462-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81461-8

  • Online ISBN: 978-3-030-81462-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics