[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Comparing Partitions: Metric Characterizations, Mean Partition, and Distortion

  • Conference paper
  • First Online:
Intelligent Computing

Abstract

Measures for quantifying the distance between two partitions are involved in many current applications, including machine vision, image processing and understanding, image and video segmentation, biology and genetics, among others. This article investigates three fundamental aspects of the comparison of partitions: the characterization of metrics for comparing partitions; their role in average-based consensus of partitions; and how the different metrics distort the spatial organization of the partitions of a finite data set. In particular, we significantly reduce number of properties in the existing characterizations of metrics for comparing partitions such as Variation of Information and Mirkin metric. Moreover, we compile the main results describing the impact of these metrics on the construction of average-based consensus functions, as well as we compute the exact reduction of the search space that the different pruning criteria (quota rules) provide. Finally, we compute the distortion value for different \(\beta \)-entropy metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rand, W.M.: Objetive criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850 (1971)

    Google Scholar 

  2. Mirkin, B.G., Chernyi, L.B.: Measurement of the distance between distinct partitions of a finite set of objects. Autom. Remote. Control. 31, 786–792 (1970)

    MathSciNet  MATH  Google Scholar 

  3. Arabie, P., Boorman, S.A.: Multidimensional scaling of mesures of distance between partitions. J. Math. Psychol. 10, 148–203 (1973)

    Article  Google Scholar 

  4. Hubert, L.J.: Nominal scale response agreement as a generalized correlation. Br. J. Math. Stat. Psychol. 30, 98–103 (1977)

    Article  Google Scholar 

  5. Hubert, L.J.: Matching models in the analysis of cross-classification. Psychometrika 44, 21–41 (1979)

    Article  MathSciNet  Google Scholar 

  6. Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78(383), 553–569 (1983)

    Article  Google Scholar 

  7. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  8. Amigó, E., Gonzalo, J., Artiles, J., Verdejo, F.: A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf. Retrieval 12(4), 461–486 (2009)

    Article  Google Scholar 

  9. Barthélemy, J.P., Monjardet, B.: The median procedure in cluster analysis and social choice theory. Math. Soc. Sci. 1(3), 235–267 (1981)

    Article  MathSciNet  Google Scholar 

  10. Xiao, W., Yang, Y., Wang, H., Li, T., Xing, H.: Semi-supervised hierarchical clustering ensemble and its application. Neurocomputing 173(3), 1362–1376 (2016)

    Article  Google Scholar 

  11. Sun, N., Yu, H.: A method to determine the number of clusters based on multi-validity index. In: Nguyen, H.S., Ha, Q.-T., Li, T., Przybyła-Kasperek, M. (eds.) IJCRS 2018. LNCS (LNAI), vol. 11103, pp. 427–439. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99368-3_33

    Chapter  Google Scholar 

  12. Zaleshina, M., Zaleshin, A.: Multiscale integration for pattern recognition in neuroimaging. In: Pardalos, P.M., Conca, P., Giuffrida, G., Nicosia, G. (eds.) MOD 2016. LNCS, vol. 10122, pp. 411–418. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51469-7_35

    Chapter  Google Scholar 

  13. Vega-Pons, S., Jiang, X., Ruiz-Shulcloper, J.: Segmentation ensemble via kernels. In: ACPR 2011, pp. 686–690 (2011)

    Google Scholar 

  14. Huang, D., Lai, J.-H., Wang, C.-D., Yuen, P.C.: Ensembling over-segmentations: from weak evidence to strong segmentation. Neurocomputing 207, 416–427 (2016)

    Article  Google Scholar 

  15. Zhang, Y., Wang, H., Zhou, H., Deng, P.: A mixture model for image boundary detection fusion. IEICE Trans. Inf. Syst. E101-D(4), 1159–1166 (2018)

    Google Scholar 

  16. Meilǎ, M.: Comparing clusterings: an axiomatic view. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 577–584 (2005)

    Google Scholar 

  17. Meilǎ, M.: Comparing clusterings-an information based distance. J. Multivar. Anal. 98(5), 873–895 (2002)

    Article  MathSciNet  Google Scholar 

  18. Meilǎ, M., Heckerman, D.: An experimental comparison of model-based clustering methods. Mach. Learn. 42(1–2), 9–29 (2001)

    Article  Google Scholar 

  19. Correa-Morris, J.: Comparing partitions: shortest path length metrics and submodularity. Int. J. Math. Models Methods Appl. Sci. 13, 45–51 (2019)

    Google Scholar 

  20. Barthélemy, J.-P., Leclerc, B.: The median procedure for partitions. Partitioning Data Sets 19, 3–34 (1993)

    Article  MathSciNet  Google Scholar 

  21. Vega-Pons, S., Correa-Morris, J., Ruiz-Shulcloper, J.: Weighted partition consensus via kernels. Pattern Recogn. 43(8), 2712–2724 (2010)

    Article  Google Scholar 

  22. Vega-Pons, S., Avesani, P.: Clustering ensemble on reduced search spaces. In: COPEM Workshop (2013)

    Google Scholar 

  23. Franek, L., Jiang, X.: Ensemble clustering by means of clustering embedding in vector spaces. Pattern Recognit. 47(2), 833–842 (2014)

    Article  Google Scholar 

  24. Ilc, N.: Weighted cluster ensemble based on partition relevance analysis with reduction step. IEEE Access 8, 113720–113736 (2020)

    Article  Google Scholar 

  25. Simovici, D.: On generalized entropy and entropic metrics. J. Multiple Valued Logic Soft Comput. 13(4/6), 295 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyrko Correa-Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Correa-Morris, J., Urra-Yglesias, A., Reyes, E., Martínez, J., Gonzalez, B. (2022). Comparing Partitions: Metric Characterizations, Mean Partition, and Distortion. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-030-80119-9_56

Download citation

Publish with us

Policies and ethics