[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SAMA: Spatially-Aware Multimodal Network with Attention For Early Lung Cancer Diagnosis

  • Conference paper
  • First Online:
Multimodal Learning for Clinical Decision Support (ML-CDS 2021)

Abstract

Lung cancer is the deadliest cancer worldwide. This fact has led to increased development of medical and computational methods to improve early diagnosis, aiming at reducing its fatality rate. Radiologists conduct lung cancer screening and diagnosis by localizing and characterizing pathologies. Therefore, there is an inherent relationship between visual clinical findings and spatial location in the images. However, in previous work, this spatial relationship between multimodal data has not been exploited. In this work, we propose a Spatially-Aware Multimodal Network with Attention (SAMA) for early lung cancer diagnosis. Our approach takes advantage of the spatial relationship between visual and clinical information, emulating the diagnostic process of the specialist. Specifically, we propose a multimodal fusion module composed of dynamic filtering of visual features with clinical data followed by a channel attention mechanism. We provide empirical evidence of the potential of SAMA to integrate spatially visual and clinical information. Our method outperforms by 14.3% the state-of-the-art method in the LUng CAncer Screening with Multimodal Biomarkers Dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ardila, D., et al.: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25(6), 954–961 (2019)

    Article  Google Scholar 

  2. Astaraki, M., Toma-Dasu, I., Smedby, Ö., Wang, C.: Normal appearance autoencoder for lung cancer detection and segmentation. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 249–256. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_28

    Chapter  Google Scholar 

  3. Daza, L., Castillo, A., Escobar, M., Valencia, S., Pinzón, B., Arbeláez, P.: LUCAS: lung cancer screening with multimodal biomarkers. In: Syeda-Mahmood, T., Drechsler, K., Greenspan, H., Madabhushi, A., Karargyris, A., Linguraru, M.G., Oyarzun Laura, C., Shekhar, R., Wesarg, S., González Ballester, M.Á., Erdt, M. (eds.) CLIP/ML-CDS -2020. LNCS, vol. 12445, pp. 115–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60946-7_12

    Chapter  Google Scholar 

  4. Gould, M.K., et al.: Evaluation of individuals with pulmonary nodules: when is it lung cancer?: diagnosis and management of lung cancer: American college of chest physicians evidence-based clinical practice guidelines. Chest 143(5), e93S-e120S (2013)

    Article  Google Scholar 

  5. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141 (2018)

    Google Scholar 

  6. Huang, H., Xu, H., Wang, X., Silamu, W.: Maximum f1-score discriminative training criterion for automatic mispronunciation detection. IEEE/ACM Trans. Audio, Speech, Lang. Process. 23(4), 787–797 (2015)

    Article  Google Scholar 

  7. Huang, P., et al.: Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method. Lancet Digit. Health 1(7), e353–e362 (2019)

    Article  Google Scholar 

  8. de Koning, H.J., et al.: Reduced lung-cancer mortality with volume CT screening in a randomized trial. N. Engl. J. Med. 382(6), 503–513 (2020)

    Article  Google Scholar 

  9. Lara, J.S., Contreras O., V.H., Otálora, S., Müller, H., González, F.A.: Multimodal latent semantic alignment for automated prostate tissue classification and retrieval. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 572–581. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_55

    Chapter  Google Scholar 

  10. Li, Y., et al.: Learning tumor growth via follow-up volume prediction for lung nodules. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 508–517. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_49

  11. Li, Z., Tao, R., Gavves, E., Snoek, C.G., Smeulders, A.W.: Tracking by natural language specification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6495–6503 (2017)

    Google Scholar 

  12. Liu, C., Lin, Z., Shen, X., Yang, J., Lu, X., Yuille, A.: Recurrent multimodal interaction for referring image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1271–1280 (2017)

    Google Scholar 

  13. Margffoy-Tuay, E., Pérez, J.C., Botero, E., Arbeláez, P.: Dynamic multimodal instance segmentation guided by natural language queries. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2018)

    Google Scholar 

  14. Moriya, T., et al.: Unsupervised segmentation of Micro-CT images of lung cancer specimen using deep generative models. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 240–248. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_27

  15. Rossi, S.E., Franquet, T., Volpacchio, M., Giménez, A., Aguilar, G.: Tree-in-bud pattern at thin-section CT of the lungs: radiologic-pathologic overview. Radiographics 25(3), 789–801 (2005)

    Article  Google Scholar 

  16. Shaffie, A., et al.: A novel technology to integrate imaging and clinical markers for non-invasive diagnosis of lung cancer. Sci. Rep. 11(1), 1–10 (2021)

    Article  Google Scholar 

  17. Society, A.C.: Lung cancer statistics: how common is lung cancer (2020). https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html

  18. Svoboda, E.: Artificial intelligence is improving the detection of lung cancer. Nature 587(7834), S20–S22 (2020)

    Article  Google Scholar 

  19. Tam, L.K., Wang, X., Turkbey, E., Lu, K., Wen, Y., Xu, D.: Weakly supervised one-stage vision and language disease detection using large scale pneumonia and pneumothorax studies. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 45–55. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_5

    Chapter  Google Scholar 

  20. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  21. Xia, C., et al.: A Multi-modality Network for Cardiomyopathy Death Risk Prediction with CMR Images and Clinical Information. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 577–585. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_64

  22. Yang, Z., Gong, B., Wang, L., Huang, W., Yu, D., Luo, J.: A fast and accurate one-stage approach to visual grounding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4683–4693 (2019)

    Google Scholar 

  23. Yu, M., et al.: Toward rapid stroke diagnosis with multimodal deep learning. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 616–626. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_59

  24. Zhang, H., Gu, Y., Qin, Y., Yao, F., Yang, G.-Z.: Learning with sure data for nodule-level lung cancer prediction. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 570–578. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_55

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank AstraZeneca Colombia and the Lung Ambition Alliance for a research grant used for the development of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mafe Roa .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 573 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roa, M., Daza, L., Escobar, M., Castillo, A., Arbelaez, P. (2021). SAMA: Spatially-Aware Multimodal Network with Attention For Early Lung Cancer Diagnosis. In: Syeda-Mahmood, T., et al. Multimodal Learning for Clinical Decision Support. ML-CDS 2021. Lecture Notes in Computer Science(), vol 13050. Springer, Cham. https://doi.org/10.1007/978-3-030-89847-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89847-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89846-5

  • Online ISBN: 978-3-030-89847-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics