Abstract
Recently, due to the active expansion of the Internet of Things (IoT) and Ubiquitous Computing, the neuro-augmented methods and tools for controlling software systems are on the rapid incline. But despite the existing understanding of the necessity of unified approaches for integration of neural interfaces into IoT ecosystems, those seem to be insufficiently developed. In most cases, the equipment is capable of working exclusively with a narrow range of software supplied by its manufacturer, which greatly hinders the integration process. In this paper, we propose the ontology-driven tools for the brain-computer interface integration into the IoT ecosystem. Unified high-level mechanism is provided that allows diverse software, services, and hardware to interconnect independently of particular IoT platforms. Visual editor is developed to design the integration process pipeline, describing desired devices and their behavior. Ontology-driven generator of corresponding firmware and middleware is created, which automates the software developers work. Some real-world applications based on the suggested approach are presented. Evaluation of the methods used is highlighted.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Calderon, M., Delgadillo, S., Garcia-Macias, A.: A more human-centric internet of things with temporal and spatial context. Proc. Comput. Sci. 83, 553–559 (2016). https://doi.org/10.1016/j.procs.2016.04.263
Cimmino, A., et al.: VICINITY: IoT semantic interoperability based on the web of things. In: 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 241–247 (2019). https://doi.org/10.1109/DCOSS.2019.00061
Bröring, A., et al.: The BIG IoT API – semantically enabling IoT interoperability. IEEE Perv. Comput. 17(4), 41–51 (2018). https://doi.org/10.1109/MPRV.2018.2873566
Ryabinin, K., Chuprina, S.: Ontology-driven edge computing. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12143, pp. 312–325. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50436-6_23
Interoperability: The Secret to a Scalable IoT Network (2021). https://behrtech.com/blog/interoperability-the-secret-to-a-scalable-iot-network/. Accessed 31 May 2021
Jabbar, S., Ullah, F., Khalid, S., Khan, M., Han, K.: Semantic interoperability in heterogeneous IoT infrastructure for healthcare. Wirel. Commun. Mobile Comput. 2017 (2017). https://doi.org/10.1155/2017/9731806
Honti, G.M., Abonyi, J.: A review of semantic sensor technologies in internet of things architectures. Complexity 2019 (2019). https://doi.org/10.1155/2019/6473160
Widell, N., Keränen, A., Badrinath, R.: What Is Semantic Interoperability in IoT and Why Is It Important? (2020), https://www.ericsson.com/en/blog/2020/7/semantic-interoperability-in-iot, last accessed 31 May 2021
Agarwal, R., et al.: Unified IoT ontology to enable interoperability and federation of testbeds. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pp. 70–75 (2016). https://doi.org/10.1109/WF-IoT.2016.7845470
Jacoby, M., Antonić, A., Kreiner, K., Łapacz, R., Pielorz, J.: Semantic interoperability as key to IoT platform federation. In: Podnar Žarko, I., Broering, A., Soursos, S., Serrano, M. (eds.) InterOSS-IoT 2016. LNCS, vol. 10218, pp. 3–19. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56877-5_1
Juárez, J., Rodríguez-Mondéjar, J.A., García-Castro, R.: An ontology-driven communication architecture for spontaneous interoperability in home automation systems. In: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pp. 1–4 (2014). https://doi.org/10.1109/ETFA.2014.7005270
El Kaed, C., Ponnouradjane, A., Shah, D.: A semantic based multi-platform IoT integration approach from sensors to Chatbots. In: 2018 Global Internet of Things Summit (GIoTS), pp. 1–6 (2018). https://doi.org/10.1109/GIOTS.2018.8534520
Sahlmann, K., Schwotzer, T.: Ontology-based virtual IoT devices for edge computing. In: Proceedings of the 8th International Conference on the Internet of Things (2018). https://doi.org/10.1145/3277593.3277597
Abdulrab, H., Babkin, E., Kozyrev, O.: Semantically enriched integration framework for ubiquitous computing environment. In: Babkin, E. (ed.) Ubiquitous Computing, pp. 177–196. IntechOpen (2011). https://doi.org/10.5772/15262
Allison, B.: The I of BCIs: next generation interfaces for brain–computer interface systems that adapt to individual users. In: Human-Computer Interaction. Novel Interaction Methods and Techniques, pp. 558–568 (2009)
Huang, S., Tognoli, E.: Brainware: synergizing software systems and neural inputs. In: Companion Proceedings of the 36th International Conference on Software Engineering, pp. 444–447 (2014). https://doi.org/10.1145/2591062.2591131
Camelo, G.A., Menezes, M.L., Sant’Anna, A.P., Vicari, R.M., Pereira, C.E.: Control of smart environments using brain computer interface based on genetic algorithm. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS (LNAI), vol. 9622, pp. 773–781. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49390-8_75
Quitadamo, L.R., Marciani, M.G., Cardarilli, G.C., Bianchi, L.: Describing different brain computer interface systems through a unique model: a UML implementation. Neuroinformatics 6(2), 81–96 (2008). https://doi.org/10.1007/s12021-008-9015-0
Nishimura, E.M., Rapoport, E.D., Wubbels, P.M., Downs, T.H., Downs, J.H.: Functional Near-Infrared Sensing (fNIR) and Environmental Control Applications, pp. 121–132 (2010). https://doi.org/10.1007/978-1-84996-272-8_8
Méndez, S.J.R., Zao, J.K.: BCI ontology: a context-based sense and actuation model for brain-computer interactions. In: 9th International Semantic Sensor Networks Workshop: 17th International Semantic Web Conference (2018)
José, S., Méndez, R.: Modeling actuations in BCI-O: a context-based integration of SOSA and IoT-O. In: Proceedings of the 8th International Conference on the Internet of Things, pp. 1–6 (2018). https://doi.org/10.1145/3277593.3277914
Zao, J.K., et al.: Augmented brain computer interaction based on fog computing and linked data. In: 2014 International Conference on Intelligent Environments, pp. 374–377 (2014). https://doi.org/10.1109/IE.2014.54
Ryabinin, K., Chuprina, S.: High-level toolset for comprehensive visual data analysis and model validation. Proc. Comput. Sci. 108, 2090–2099 (2017). https://doi.org/10.1016/j.procs.2017.05.050
Ryabinin, K., Chuprina, S., Kolesnik, M.: Calibration and monitoring of IoT devices by means of embedded scientific visualization tools. In: Shi, Y., et al. (eds.) ICCS 2018. LNCS, vol. 10861, pp. 655–668. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93701-4_52
Ryabinin, K., Chuprina, S., Belousov, K.: Ontology-driven automation of IoT-based human-machine interfaces development. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11540, pp. 110–124. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22750-0_9
Chuprina, S., Nasraoui, O.: Using ontology-based adaptable scientific visualization and cognitive graphics tools to transform traditional information systems into intelligent systems. Sci. Visual. 8(1), 23–44 (2016)
Abiri, R., Borhani, S., Sellers, E.W., Jiang, Y., Zhao, X.: A comprehensive review of EEG-based brain-computer interface paradigms. J. Neural. Eng. 16(1), 011001 (2019). https://doi.org/10.1088/1741-2552/aaf12e
Janowicz, K., Compton, M.: The stimulus-sensor-observation ontology design pattern and its integration into the semantic sensor network ontology. In: Proceedings of the 3rd International Conference on Semantic Sensor Networks, vol. 668, pp. 64–78 (2010)
Saba-Sadiya, S., Alhanai, T., Liu, T., Ghassemi, M.M.: EEG channel interpolation using deep encoder-decoder networks. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 2432–2439 (2020). https://doi.org/10.1109/BIBM49941.2020.9312979
Courellis, H.S., Iversen, J.R., Poizner, H., Cauwenberghs, G.: EEG channel interpolation using ellipsoid geodesic length. In: 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 540–543 (2016). https://doi.org/10.1109/BioCAS.2016.7833851
Virtanen, P., et al.: SciPy 1.0: Fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2
Gramfort, A., et al.: MEG and EEG data analysis with MNE-python. Front. Neurosci. 7, 1–13 (2013). https://doi.org/10.3389/fnins.2013.00267
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2008). https://doi.org/10.1109/MSP.2008.4408441
Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b. Frontiers in Neuroscience 6 (2012). https://doi.org/10.3389/fnins.2012.00039
Lotte, F., Guan, C.: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58(2), 355–362 (2011). https://doi.org/10.1109/TBME.2010.2082539
Pfurtscheller, G., et al.: Current trends in Graz brain-computer interface (BCI) research. IEEE Trans. Rehabil. Eng. 8(2), 216–219 (2000). https://doi.org/10.1109/86.847821
Wu, S.L., Wu, C.W., Pal, N.R., Chen, C.Y., Chen, S.A., Lin, C.T.: Common spatial pattern and linear discriminant analysis for motor imagery classification. In: 2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), pp. 146–151 (2013). https://doi.org/10.1109/CCMB.2013.6609178
Kołodziej, M., Majkowski, A., Rak, R.: Linear discriminant analysis as EEG features reduction technique for brain-computer interfaces. Przeglad Elektrotechniczny, pp. 28–30 (2012)
Schalk, G., McFarland, D., Hinterberger, T., Birbaumer, N., Wolpaw, J.: BCI2000: a General-Purpose Brain-Computer Interface (BCI) System. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004). https://doi.org/10.1109/TBME.2004.827072
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ryabinin, K., Chuprina, S., Labutin, I. (2022). Tackling IoT Interoperability Problems with Ontology-Driven Smart Approach. In: Rocha, A., Isaeva, E. (eds) Science and Global Challenges of the 21st Century - Science and Technology. Perm Forum 2021. Lecture Notes in Networks and Systems, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-030-89477-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-89477-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89476-4
Online ISBN: 978-3-030-89477-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)