Abstract
Dynamic Epistemic Logic (DEL) is used in the analysis of a wide class of application scenarios involving multi-agents systems with local perceptions of information and knowledge. In its classical form, the knowledge of epistemic states is represented by sets of propositions. However, the complexity of the current systems, requires other richer structures, than sets of propositions, to represent knowledge on their epistemic states. Algebras, graphs or distributions are examples of useful structures for this end. Based on this observation, we introduced a parametric method to build dynamic epistemic logics on-demand, taking as parameter the specific knowledge representation framework (e.g., propositional, equational or even a modal logic) that better fits the problems in hand. In order to use the built logics in practices, tools support is needed. Based on this, we extended our previous method with a parametric construction of complete proof calculi. The complexity of the model checking and satisfiability problems for the achieved logics are provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balbiani, P., Gasquet, O., Schwarzentruber, F.: Agents that look at one another. Logic J. IGPL 21(3), 438–467 (2013). https://doi.org/10.1093/jigpal/jzs052
Benevides, M.R.F., Madeira, A., Martins, M.A.: A family of graded epistemic logics. In: Alves, S., Wasserman, R. (eds.) 12th Workshop on Logical and Semantic Frameworks, with Applications, LSFA 2017, Brasília, Brazil, 23–24 September 2017. Electronic Notes in Theoretical Computer Science, vol. 338, pp. 45–59. Elsevier (2017). https://doi.org/10.1016/j.entcs.2018.10.004
Blackburn, P., ten Cate, B.: Pure Extensions, Proof Rules and Hybrid Axiomatics. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Proceedings of the Advances in Modal Logic 2004 (AiML 2004) (2004)
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)
van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library, vol. 337. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-5839-4
van Eijck, J., Gattinger, M.: Elements of epistemic crypto logic. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems. AAMAS ’15, pp. 1795–1796. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2015). http://dl.acm.org/citation.cfm?id=2772879.2773441
van Eijck, J., Gattinger, M., Wang, Y.: Knowing values and public inspection. In: Ghosh, S., Prasad, S. (eds.) ICLA 2017. LNCS, vol. 10119, pp. 77–90. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54069-5_7
Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT Press, Cambridge (1995)
Fisher, M.J., Ladner, R.F.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18, 194–211 (1979)
Fitting, M., Mendelsohn, R.: First-Order Modal Logic. Synthese Library Studies in Epistemology Logic, Methodology, and Philosophy of Science, vol. 277. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5292-1https://books.google.com.br/books?id=JMV9ZOg3KkUC
Goldblatt, R.: Logics of Time and Computation. CSLI Lecture Notes 7, CSLI, Stanford (1992)
Hájek, P.: Basic fuzzy logic and BL-algebras. Soft Comput. 2(3), 124–128 (1998). https://doi.org/10.1007/s005000050043
Herzig, A., Lorini, E., Maffre, F.: A poor man’s epistemic logic based on propositional assignment and higher-order observation. In: van der Hoek, W., Holliday, W.H., Wang, W. (eds.) LORI 2015. LNCS, vol. 9394, pp. 156–168. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48561-3_13
Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)
van der Hoek, W., Iliev, P., Wooldridge, M.: A logic of revelation and concealment. In: International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2012, Valencia, Spain, 4–8 June 2012 (3 Volumes), pp. 1115–1122 (2012). http://dl.acm.org/citation.cfm?id=2343856
van der Hoek, W., Troquard, N., Wooldridge, M.: Knowledge and control. In: 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, 2–6 May 2011, vol. 1–3, pp. 719–726 (2011). http://portal.acm.org/citation.cfm?id=2031720&CFID=54178199&CFTOKEN=61392764
Kooi, B.P.: Probabilistic dynamic epistemic logic. J. Logic Lang. Inf. 12(4), 381–408 (2003). https://doi.org/10.1023/A:1025050800836
Kozen, D., Parikh, R.: An elementary proof of the completeness of PDL. Theoret. Comput. Sci. 14, 113–118 (1981)
Madeira, A., Martins, M.A., Benevides, M.R.F.: Epistemic logics with structured knowledge. In: Accattoli, B., Olarte, C. (eds.) Proceedings of the 13th Workshop on Logical and Semantic Frameworks with Applications, LSFA 2018, Fortaleza, Brazil, 26–28 September 2018. Electronic Notes in Theoretical Computer Science, vol. 344, pp. 137–149. Elsevier (2018). https://doi.org/10.1016/j.entcs.2019.07.009
Madeira, A., Neves, R., Barbosa, L.S., Martins, M.A.: A method for rigorous design of reconfigurable systems. Sci. Comput. Program. 132, 50–76 (2016). https://doi.org/10.1016/j.scico.2016.05.001
Madeira, A., Neves, R., Martins, M.A.: An exercise on the generation of many-valued dynamic logics. J. Log. Algebr. Meth. Program. 85(5), 1011–1037 (2016). https://doi.org/10.1016/j.jlamp.2016.03.004
Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Proof theory for hybrid(ISED) logics. Sci. Comput. Program. 126, 73–93 (2016). https://doi.org/10.1016/j.scico.2016.03.001
Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–88 (1986). https://doi.org/10.1016/0004-3702(86)90031-7
Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63588-0http://www.springer.com/978-3-319-63587-3
van Ditmarsch, H., van der Hoek, W., Halpern, J., Kooi, B. (eds.): Handbook of Epistemic Logic. College Publications (2015)
Wang, Y.: Beyond knowing that: a new generation of epistemic logics. In: van Ditmarsch, H., Sandu, G. (eds.) Jaakko Hintikka on Knowledge and Game-Theoretical Semantics. OCL, vol. 12, pp. 499–533. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62864-6_21
Acknowledgement
The first author is also partially supported by the Brazilian research agencies CNPq, CAPES and FAPERJ. Second and third authors are partially supported by the ERDF—European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-030947 and by UID/MAT/04106/2019 at CIDMA.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Benevides, M., Madeira, A., Martins, M.A. (2021). Adding Proof Calculi to Epistemic Logics with Structured Knowledge. In: Hojjat, H., Massink, M. (eds) Fundamentals of Software Engineering. FSEN 2021. Lecture Notes in Computer Science(), vol 12818. Springer, Cham. https://doi.org/10.1007/978-3-030-89247-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-89247-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89246-3
Online ISBN: 978-3-030-89247-0
eBook Packages: Computer ScienceComputer Science (R0)