[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Adding Proof Calculi to Epistemic Logics with Structured Knowledge

  • Conference paper
  • First Online:
Fundamentals of Software Engineering (FSEN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12818))

Included in the following conference series:

  • 381 Accesses

Abstract

Dynamic Epistemic Logic (DEL) is used in the analysis of a wide class of application scenarios involving multi-agents systems with local perceptions of information and knowledge. In its classical form, the knowledge of epistemic states is represented by sets of propositions. However, the complexity of the current systems, requires other richer structures, than sets of propositions, to represent knowledge on their epistemic states. Algebras, graphs or distributions are examples of useful structures for this end. Based on this observation, we introduced a parametric method to build dynamic epistemic logics on-demand, taking as parameter the specific knowledge representation framework (e.g., propositional, equational or even a modal logic) that better fits the problems in hand. In order to use the built logics in practices, tools support is needed. Based on this, we extended our previous method with a parametric construction of complete proof calculi. The complexity of the model checking and satisfiability problems for the achieved logics are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balbiani, P., Gasquet, O., Schwarzentruber, F.: Agents that look at one another. Logic J. IGPL 21(3), 438–467 (2013). https://doi.org/10.1093/jigpal/jzs052

    Article  MathSciNet  MATH  Google Scholar 

  2. Benevides, M.R.F., Madeira, A., Martins, M.A.: A family of graded epistemic logics. In: Alves, S., Wasserman, R. (eds.) 12th Workshop on Logical and Semantic Frameworks, with Applications, LSFA 2017, Brasília, Brazil, 23–24 September 2017. Electronic Notes in Theoretical Computer Science, vol. 338, pp. 45–59. Elsevier (2017). https://doi.org/10.1016/j.entcs.2018.10.004

  3. Blackburn, P., ten Cate, B.: Pure Extensions, Proof Rules and Hybrid Axiomatics. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Proceedings of the Advances in Modal Logic 2004 (AiML 2004) (2004)

    Google Scholar 

  4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  5. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library, vol. 337. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-5839-4

    Book  MATH  Google Scholar 

  6. van Eijck, J., Gattinger, M.: Elements of epistemic crypto logic. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems. AAMAS ’15, pp. 1795–1796. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2015). http://dl.acm.org/citation.cfm?id=2772879.2773441

  7. van Eijck, J., Gattinger, M., Wang, Y.: Knowing values and public inspection. In: Ghosh, S., Prasad, S. (eds.) ICLA 2017. LNCS, vol. 10119, pp. 77–90. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54069-5_7

    Chapter  MATH  Google Scholar 

  8. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  9. Fisher, M.J., Ladner, R.F.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18, 194–211 (1979)

    Article  MathSciNet  Google Scholar 

  10. Fitting, M., Mendelsohn, R.: First-Order Modal Logic. Synthese Library Studies in Epistemology Logic, Methodology, and Philosophy of Science, vol. 277. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5292-1https://books.google.com.br/books?id=JMV9ZOg3KkUC

    Book  MATH  Google Scholar 

  11. Goldblatt, R.: Logics of Time and Computation. CSLI Lecture Notes 7, CSLI, Stanford (1992)

    Google Scholar 

  12. Hájek, P.: Basic fuzzy logic and BL-algebras. Soft Comput. 2(3), 124–128 (1998). https://doi.org/10.1007/s005000050043

    Article  Google Scholar 

  13. Herzig, A., Lorini, E., Maffre, F.: A poor man’s epistemic logic based on propositional assignment and higher-order observation. In: van der Hoek, W., Holliday, W.H., Wang, W. (eds.) LORI 2015. LNCS, vol. 9394, pp. 156–168. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48561-3_13

    Chapter  MATH  Google Scholar 

  14. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)

    MATH  Google Scholar 

  15. van der Hoek, W., Iliev, P., Wooldridge, M.: A logic of revelation and concealment. In: International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2012, Valencia, Spain, 4–8 June 2012 (3 Volumes), pp. 1115–1122 (2012). http://dl.acm.org/citation.cfm?id=2343856

  16. van der Hoek, W., Troquard, N., Wooldridge, M.: Knowledge and control. In: 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, 2–6 May 2011, vol. 1–3, pp. 719–726 (2011). http://portal.acm.org/citation.cfm?id=2031720&CFID=54178199&CFTOKEN=61392764

  17. Kooi, B.P.: Probabilistic dynamic epistemic logic. J. Logic Lang. Inf. 12(4), 381–408 (2003). https://doi.org/10.1023/A:1025050800836

    Article  MathSciNet  MATH  Google Scholar 

  18. Kozen, D., Parikh, R.: An elementary proof of the completeness of PDL. Theoret. Comput. Sci. 14, 113–118 (1981)

    Article  MathSciNet  Google Scholar 

  19. Madeira, A., Martins, M.A., Benevides, M.R.F.: Epistemic logics with structured knowledge. In: Accattoli, B., Olarte, C. (eds.) Proceedings of the 13th Workshop on Logical and Semantic Frameworks with Applications, LSFA 2018, Fortaleza, Brazil, 26–28 September 2018. Electronic Notes in Theoretical Computer Science, vol. 344, pp. 137–149. Elsevier (2018). https://doi.org/10.1016/j.entcs.2019.07.009

  20. Madeira, A., Neves, R., Barbosa, L.S., Martins, M.A.: A method for rigorous design of reconfigurable systems. Sci. Comput. Program. 132, 50–76 (2016). https://doi.org/10.1016/j.scico.2016.05.001

    Article  Google Scholar 

  21. Madeira, A., Neves, R., Martins, M.A.: An exercise on the generation of many-valued dynamic logics. J. Log. Algebr. Meth. Program. 85(5), 1011–1037 (2016). https://doi.org/10.1016/j.jlamp.2016.03.004

    Article  MathSciNet  MATH  Google Scholar 

  22. Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Proof theory for hybrid(ISED) logics. Sci. Comput. Program. 126, 73–93 (2016). https://doi.org/10.1016/j.scico.2016.03.001

    Article  Google Scholar 

  23. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–88 (1986). https://doi.org/10.1016/0004-3702(86)90031-7

    Article  MathSciNet  MATH  Google Scholar 

  24. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63588-0http://www.springer.com/978-3-319-63587-3

    Book  MATH  Google Scholar 

  25. van Ditmarsch, H., van der Hoek, W., Halpern, J., Kooi, B. (eds.): Handbook of Epistemic Logic. College Publications (2015)

    Google Scholar 

  26. Wang, Y.: Beyond knowing that: a new generation of epistemic logics. In: van Ditmarsch, H., Sandu, G. (eds.) Jaakko Hintikka on Knowledge and Game-Theoretical Semantics. OCL, vol. 12, pp. 499–533. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62864-6_21

    Chapter  Google Scholar 

Download references

Acknowledgement

The first author is also partially supported by the Brazilian research agencies CNPq, CAPES and FAPERJ. Second and third authors are partially supported by the ERDF—European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-030947 and by UID/MAT/04106/2019 at CIDMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Madeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benevides, M., Madeira, A., Martins, M.A. (2021). Adding Proof Calculi to Epistemic Logics with Structured Knowledge. In: Hojjat, H., Massink, M. (eds) Fundamentals of Software Engineering. FSEN 2021. Lecture Notes in Computer Science(), vol 12818. Springer, Cham. https://doi.org/10.1007/978-3-030-89247-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89247-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89246-3

  • Online ISBN: 978-3-030-89247-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics