Abstract
Micro-expression recognition is a video sentiment classification task with extremely small sample size. The transience and spatial locality of micro-expressions bring difficulties to constructing large micro-expression databases and designing micro-expression recognition algorithms. To reach the balance between classification accuracy and model complexity in this domain, we propose a lightweight neural micro-expression recognizer, Off-TANet, which is based on apex-onset optical flow features. The neural network contains a simple yet powerful triplet attention mechanism, and the powerfulness of this design could be interpreted in 2 aspects, FACS AU and matrix sparseness. The model evaluation is conducted with a LOSO cross-validation strategy on a combined database including 3 mainstream micro-expression databases. With obviously fewer total parameters (59,403), the results of the experiment indicate that the model achieves an average recall of 0.7315 and an average F1-score of 0.7242, exceeding other major architectures in this domain. A series of ablation experiments are also conducted to ensure the validity of our model design.
This study supported by The Research Project of Shanghai Science and Technology Commission (20dz2260300) and The Fundamental Research Funds for the Central Universities. also supported by the Science and Technology Commission of Shanghai Municipality (No. 19511120601).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Davison, A.K., Lansley, C., Costen, N., Tan, K., Yap, M.H.: SAMM: a spontaneous micro-facial movement dataset. IEEE Trans. Affect. Comput. 9(1), 116–129 (2016)
Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Ekman, P., Friesen, W.V.: Nonverbal leakage and clues to deception. Psychiatry 32(1), 88–106 (1969)
Gan, Y., Liong, S.T., Yau, W.C., Huang, Y.C., Tan, L.K.: OFF-ApexNet on micro-expression recognition system. Sig. Process. Image Commun. 74, 129–139 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5(9), 1457–1469 (2004)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Huang, X., Zhao, G., Hong, X., Zheng, W., Pietikäinen, M.: Spontaneous facial micro-expression analysis using spatiotemporal completed local quantized patterns. Neurocomputing 175, 564–578 (2016)
Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. arXiv preprint arXiv:1506.02025 (2015)
Lai, Z., Chen, R., Jia, J., Qian, Y.: Real-time micro-expression recognition based on ResNet and atrous convolutions. J. Ambient. Intell. Humaniz. Comput., 1–12 (2020). https://doi.org/10.1007/s12652-020-01779-5
Li, X., Pfister, T., Huang, X., Zhao, G., Pietikäinen, M.: A spontaneous micro-expression database: inducement, collection and baseline. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–6. IEEE (2013)
Liong, S.T., Gan, Y., See, J., Khor, H.Q., Huang, Y.C.: Shallow triple stream three-dimensional CNN (STSTNet) for micro-expression recognition. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2019, pp. 1–5. IEEE (2019)
Liong, S.T., See, J., Wong, K., Phan, R.C.W.: Less is more: micro-expression recognition from video using apex frame. Sig. Process. Image Commun. 62, 82–92 (2018)
Liu, Y., Du, H., Zheng, L., Gedeon, T.: A neural micro-expression recognizer. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2019, pp. 1–4. IEEE (2019)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)
Lo, L., Xie, H.X., Shuai, H.H., Cheng, W.H.: MER GCN: micro-expression recognition based on relation modeling with graph convolutional networks. In: 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 79–84. IEEE (2020)
Pérez, J.S., Meinhardt-Llopis, E., Facciolo, G.: TV-L1 optical flow estimation. IPOL 2013, 137–150 (2013)
Polikovsky, S., Kameda, Y., Ohta, Y.: Facial micro-expressions recognition using high speed camera and 3D-gradient descriptor (2009)
Qu, F., Wang, S.J., Yan, W.J., Li, H., Wu, S., Fu, X.: CAS(ME)\(^2\): a database for spontaneous macro-expression and micro-expression spotting and recognition. IEEE Trans. Affect. Comput. 9(4), 424–436 (2017)
Russell, T.A., Chu, E., Phillips, M.L.: A pilot study to investigate the effectiveness of emotion recognition remediation in schizophrenia using the micro-expression training tool. Br. J. Clin. Psychol. 45(4), 579–583 (2006)
Russell, T.A., Green, M.J., Simpson, I., Coltheart, M.: Remediation of facial emotion perception in schizophrenia: concomitant changes in visual attention. Schizophr. Res. 103(1–3), 248–256 (2008)
See, J., Yap, M.H., Li, J., Hong, X., Wang, S.J.: MEGC 2019-the second facial micro-expressions grand challenge. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2019, pp. 1–5. IEEE (2019)
Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck transformers for visual recognition. arXiv preprint arXiv:2101.11605 (2021)
Swart, M., Kortekaas, R., Aleman, A.: Dealing with feelings: characterization of trait alexithymia on emotion regulation strategies and cognitive-emotional processing. PLOS ONE 4(6), e5751 (2009)
Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)
Wang, C., Peng, M., Bi, T., Chen, T.: Micro-attention for micro-expression recognition. Neurocomputing 410, 354–362 (2020)
Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Yan, W.J., et al.: CASME II: an improved spontaneous micro-expression database and the baseline evaluation. PLOS ONE 9(1), e86041 (2014)
Yan, W.J., Wu, Q., Liu, Y.J., Wang, S.J., Fu, X.: CASME database: a dataset of spontaneous micro-expressions collected from neutralized faces. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–7. IEEE (2013)
Yap, M.H., See, J., Hong, X., Wang, S.J.: Facial micro-expressions grand challenge 2018 summary. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2018, pp. 675–678. IEEE (2018)
Zhang, M., Fu, Q., Chen, Y.H., Fu, X.: Emotional context influences micro-expression recognition. PLOS ONE 9(4), e95018 (2014)
Zhou, L., Mao, Q., Xue, L.: Dual-inception network for cross-database micro-expression recognition. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2019, pp. 1–5. IEEE (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, J., Liu, F., Zhou, A. (2021). Off-TANet: A Lightweight Neural Micro-expression Recognizer with Optical Flow Features and Integrated Attention Mechanism. In: Pham, D.N., Theeramunkong, T., Governatori, G., Liu, F. (eds) PRICAI 2021: Trends in Artificial Intelligence. PRICAI 2021. Lecture Notes in Computer Science(), vol 13031. Springer, Cham. https://doi.org/10.1007/978-3-030-89188-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-89188-6_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89187-9
Online ISBN: 978-3-030-89188-6
eBook Packages: Computer ScienceComputer Science (R0)