[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Off-TANet: A Lightweight Neural Micro-expression Recognizer with Optical Flow Features and Integrated Attention Mechanism

  • Conference paper
  • First Online:
PRICAI 2021: Trends in Artificial Intelligence (PRICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13031))

Included in the following conference series:

Abstract

Micro-expression recognition is a video sentiment classification task with extremely small sample size. The transience and spatial locality of micro-expressions bring difficulties to constructing large micro-expression databases and designing micro-expression recognition algorithms. To reach the balance between classification accuracy and model complexity in this domain, we propose a lightweight neural micro-expression recognizer, Off-TANet, which is based on apex-onset optical flow features. The neural network contains a simple yet powerful triplet attention mechanism, and the powerfulness of this design could be interpreted in 2 aspects, FACS AU and matrix sparseness. The model evaluation is conducted with a LOSO cross-validation strategy on a combined database including 3 mainstream micro-expression databases. With obviously fewer total parameters (59,403), the results of the experiment indicate that the model achieves an average recall of 0.7315 and an average F1-score of 0.7242, exceeding other major architectures in this domain. A series of ablation experiments are also conducted to ensure the validity of our model design.

This study supported by The Research Project of Shanghai Science and Technology Commission (20dz2260300) and The Fundamental Research Funds for the Central Universities. also supported by the Science and Technology Commission of Shanghai Municipality (No. 19511120601).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davison, A.K., Lansley, C., Costen, N., Tan, K., Yap, M.H.: SAMM: a spontaneous micro-facial movement dataset. IEEE Trans. Affect. Comput. 9(1), 116–129 (2016)

    Article  Google Scholar 

  2. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  3. Ekman, P., Friesen, W.V.: Nonverbal leakage and clues to deception. Psychiatry 32(1), 88–106 (1969)

    Article  Google Scholar 

  4. Gan, Y., Liong, S.T., Yau, W.C., Huang, Y.C., Tan, L.K.: OFF-ApexNet on micro-expression recognition system. Sig. Process. Image Commun. 74, 129–139 (2019)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5(9), 1457–1469 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  8. Huang, X., Zhao, G., Hong, X., Zheng, W., Pietikäinen, M.: Spontaneous facial micro-expression analysis using spatiotemporal completed local quantized patterns. Neurocomputing 175, 564–578 (2016)

    Article  Google Scholar 

  9. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. arXiv preprint arXiv:1506.02025 (2015)

  10. Lai, Z., Chen, R., Jia, J., Qian, Y.: Real-time micro-expression recognition based on ResNet and atrous convolutions. J. Ambient. Intell. Humaniz. Comput., 1–12 (2020). https://doi.org/10.1007/s12652-020-01779-5

  11. Li, X., Pfister, T., Huang, X., Zhao, G., Pietikäinen, M.: A spontaneous micro-expression database: inducement, collection and baseline. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–6. IEEE (2013)

    Google Scholar 

  12. Liong, S.T., Gan, Y., See, J., Khor, H.Q., Huang, Y.C.: Shallow triple stream three-dimensional CNN (STSTNet) for micro-expression recognition. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2019, pp. 1–5. IEEE (2019)

    Google Scholar 

  13. Liong, S.T., See, J., Wong, K., Phan, R.C.W.: Less is more: micro-expression recognition from video using apex frame. Sig. Process. Image Commun. 62, 82–92 (2018)

    Article  Google Scholar 

  14. Liu, Y., Du, H., Zheng, L., Gedeon, T.: A neural micro-expression recognizer. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2019, pp. 1–4. IEEE (2019)

    Google Scholar 

  15. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)

  16. Lo, L., Xie, H.X., Shuai, H.H., Cheng, W.H.: MER GCN: micro-expression recognition based on relation modeling with graph convolutional networks. In: 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 79–84. IEEE (2020)

    Google Scholar 

  17. Pérez, J.S., Meinhardt-Llopis, E., Facciolo, G.: TV-L1 optical flow estimation. IPOL 2013, 137–150 (2013)

    Article  Google Scholar 

  18. Polikovsky, S., Kameda, Y., Ohta, Y.: Facial micro-expressions recognition using high speed camera and 3D-gradient descriptor (2009)

    Google Scholar 

  19. Qu, F., Wang, S.J., Yan, W.J., Li, H., Wu, S., Fu, X.: CAS(ME)\(^2\): a database for spontaneous macro-expression and micro-expression spotting and recognition. IEEE Trans. Affect. Comput. 9(4), 424–436 (2017)

    Article  Google Scholar 

  20. Russell, T.A., Chu, E., Phillips, M.L.: A pilot study to investigate the effectiveness of emotion recognition remediation in schizophrenia using the micro-expression training tool. Br. J. Clin. Psychol. 45(4), 579–583 (2006)

    Article  Google Scholar 

  21. Russell, T.A., Green, M.J., Simpson, I., Coltheart, M.: Remediation of facial emotion perception in schizophrenia: concomitant changes in visual attention. Schizophr. Res. 103(1–3), 248–256 (2008)

    Article  Google Scholar 

  22. See, J., Yap, M.H., Li, J., Hong, X., Wang, S.J.: MEGC 2019-the second facial micro-expressions grand challenge. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2019, pp. 1–5. IEEE (2019)

    Google Scholar 

  23. Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck transformers for visual recognition. arXiv preprint arXiv:2101.11605 (2021)

  24. Swart, M., Kortekaas, R., Aleman, A.: Dealing with feelings: characterization of trait alexithymia on emotion regulation strategies and cognitive-emotional processing. PLOS ONE 4(6), e5751 (2009)

    Article  Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

  26. Wang, C., Peng, M., Bi, T., Chen, T.: Micro-attention for micro-expression recognition. Neurocomputing 410, 354–362 (2020)

    Article  Google Scholar 

  27. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  28. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  29. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  30. Yan, W.J., et al.: CASME II: an improved spontaneous micro-expression database and the baseline evaluation. PLOS ONE 9(1), e86041 (2014)

    Article  Google Scholar 

  31. Yan, W.J., Wu, Q., Liu, Y.J., Wang, S.J., Fu, X.: CASME database: a dataset of spontaneous micro-expressions collected from neutralized faces. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–7. IEEE (2013)

    Google Scholar 

  32. Yap, M.H., See, J., Hong, X., Wang, S.J.: Facial micro-expressions grand challenge 2018 summary. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2018, pp. 675–678. IEEE (2018)

    Google Scholar 

  33. Zhang, M., Fu, Q., Chen, Y.H., Fu, X.: Emotional context influences micro-expression recognition. PLOS ONE 9(4), e95018 (2014)

    Article  Google Scholar 

  34. Zhou, L., Mao, Q., Xue, L.: Dual-inception network for cross-database micro-expression recognition. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2019, pp. 1–5. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Liu, F., Zhou, A. (2021). Off-TANet: A Lightweight Neural Micro-expression Recognizer with Optical Flow Features and Integrated Attention Mechanism. In: Pham, D.N., Theeramunkong, T., Governatori, G., Liu, F. (eds) PRICAI 2021: Trends in Artificial Intelligence. PRICAI 2021. Lecture Notes in Computer Science(), vol 13031. Springer, Cham. https://doi.org/10.1007/978-3-030-89188-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89188-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89187-9

  • Online ISBN: 978-3-030-89188-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics