Abstract
Multispectral camera gets the three-dimensional spatial information and spectral reflection of natural objects. It is useful to exploit the shape or color difference, even the material variation. This paper introduces a compact multispectral camera. It is composed by a gray camera and RGB LED. The multispectral images are recovered using quadratic optimization and known eigenvector of Mussel color chips. It is an active illumination method and the spectral response of LED and detector are calibrated to obtain the actual spectral reflection. We analyze the accuracy of recovered spectrum using simulation and build a prototype to validate it. The experiment shows that it can distinguish the close colors effectively. This multispectral camera can be an enhanced camera for intelligent detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Garini, Y., Young, I.T., McNamara, G.: Spectral imaging: principles and applications. Cytometry 69A, 735–747 (2006)
Park, J.I., Lee, M.H., Grossberg, M.D., Nayar, S.K.: Multispectral imaging using multiplexed illumination. IEEE (2007)
Kamshilin, A.A., Nippolainen, E.: Chromatic discrimination by use of computer controlled set of light-emitting diodes. Opt. Express 15(23), 15093–15100 (2007)
Fauch, L., Nippolainen, E., Teplov, V., Kamshilin, A.A.: Recovery of reflection spectra in a multispectral imaging system with light emitting diodes. Opt. Express 18(22), 23394–23405 (2010)
Tschannerl, J., Ren, J., Zhao, H., Kao, F., Marshall, S., Yuen, P.: Hyperspectral image reconstruction using multi-color and time-multiplexed LED illumination. Opt. Lasers Eng. 121, 352–357 (2019)
Arad, B., Ben-Shahar, O.: Sparse recovery of hyperspectral signal from natural RGB images. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 19–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_2
Fu, Y., Zheng, Y., Zhang, L., Huang, H.: Spectral reflectance recovery from a single RGB image. IEEE Trans. Comput. Imaging 4(3), 382–394 (2018)
Jia, Y., et al.: From RGB to spectrum for natural scenes via manifold-based mapping. In: IEEE International Conference on Computer Vision, pp. 4715–4723 (2017)
Zhao, Y., Guo, H., Ma, Z., Cao, X., Yue, T., Hu, X.: Hyperspectral imaging with random printed mask. In: CVPR, pp. 10149–10157. IEEE (2018)
Parkkinen, J.P.S., Hallikainen, J., Jaaskelainen, T.: Characteristic spectra of Munsell colors. J. Opt. Soc. Am. A 6(2), 318–322 (1989)
Multispectral database. http://www.cs.columbia.edu/CAVE/databases/multispectral/
Acknowledgment
This paper is partially supported by NSFC-Shenzhen Robot Basic Research Center project (U1713224) and Shenzhen Fundamental Research Program (JCYJ20170818163928953).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ma, C., Yu, M., Chen, F., Zhu, H., Fang, H. (2021). Compact Multispectral Camera Using RGB LED and Optimization. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_49
Download citation
DOI: https://doi.org/10.1007/978-3-030-89134-3_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89133-6
Online ISBN: 978-3-030-89134-3
eBook Packages: Computer ScienceComputer Science (R0)