Abstract
Process models automatically discovered from event logs represent business process behavior in a compact graphical way. To compare process variants, e.g., to explore how the system’s behavior changes over time or between customer segments, analysts tend to visually compare conceptual process models discovered from different “slices” of the event log, solely relying on the structure of these models. However, the structural distance between two process models does not always reflect the behavioral distance between the underlying event logs and thus structural comparison should be applied with care. This paper aims to investigate relations between structural and behavioral process distances and explain when structural distance between two discovered process models can be used to assess the behavioral distance between the corresponding event logs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Although the model can be simplified (some gateways can be merged), we analyze BPMN models as they are provided by the discovery algorithms.
- 2.
- 3.
- 4.
References
van der Aalst, W.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
Augusto, A., Armas-Cervantes, A., Conforti, R., Dumas, M., La Rosa, M., Reissner, D.: Abstract-and-compare: a family of scalable precision measures for automated process discovery. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 158–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_10
Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst. 59(2), 251–284 (2019). https://doi.org/10.1007/s10115-018-1214-x
van Beest, N.R.T.P., Dumas, M., García-Bañuelos, L., La Rosa, M.: Log delta analysis: interpretable differencing of business process event logs. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 386–405. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_26
Bolt, A., de Leoni, M., van der Aalst, W.M.P.: A visual approach to spot statistically-significant differences in event logs based on process metrics. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 151–166. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_10
Bose, R., van der Aalst, W., Žliobaitė, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 154–171 (2014)
Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010). https://doi.org/10.1007/s10044-008-0141-y
Ivanov, S., Kalenkova, A., van der Aalst, W.: BPMNDiffViz: a tool for BPMN models comparison. In: BPM Demo Session, BPM. CEUR-WS, vol. 1418, pp. 35–39 (2015)
Kalenkova, A., Polyvyanyy, A.: A spectrum of entropy-based precision and recall measurements between partially matching designed and observed processes. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H., Bouguettaya, A., Motahari, H. (eds.) ICSOC 2020. LNCS, vol. 12571, pp. 337–354. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65310-1_24
La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging: an approach to business process consolidation. ACM Trans. Softw. Eng. Methodol. 22(2), 1–42 (2013)
La Rosa, M., et al.: Apromore: an advanced process model repository. Expert Syst. Appl. 38(6), 7029–7040 (2011)
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 91–110. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5_6
Pietsch, P., Wenzel, S.: Comparison of BPMN2 diagrams. In: Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 83–97. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33155-8_7
Polyvyanyy, A., et al.: Entropia: a family of entropy-based conformance checking measures for process mining. In: ICPM Doctoral Consortium and Tool Demonstration Track. CEUR Workshop Proceedings, vol. 2703, pp. 39–42 (2020)
Polyvyanyy, A., Kalenkova, A.A.: Monotone conformance checking for partially matching designed and observed processes. In: ICPM, pp. 81–88. IEEE (2019)
Polyvyanyy, A., Solti, A., Weidlich, M., Di Ciccio, C., Mendling, J.: Monotone precision and recall measures for comparing executions and specifications of dynamic systems. ACM Trans. Softw. Eng. Methodol. 29(3), 1–41 (2020)
Skobtsov, A., Kalenkova, A.: Efficient algorithms for finding differences between process models. In: 2019 Ivannikov Ispras Open Conference (ISPRAS), pp. 60–66 (2019)
Taymouri, F., La Rosa, M., Dumas, M., Maggi, F.: Business process variant analysis: Survey and classification. Knowl.-Based Syst. 211, 106557 (2021)
Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference computation of large models. In: ESEC/FSE, pp. 295–304. ACM, New York (2007)
Acknowledgments
This work was partly supported by the Australian Research Council Discovery Project DP180102839.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kalenkova, A., Polyvyanyy, A., Rosa, M.L. (2021). Structural and Behavioral Biases in Process Comparison Using Models and Logs. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds) Conceptual Modeling. ER 2021. Lecture Notes in Computer Science(), vol 13011. Springer, Cham. https://doi.org/10.1007/978-3-030-89022-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-89022-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89021-6
Online ISBN: 978-3-030-89022-3
eBook Packages: Computer ScienceComputer Science (R0)