[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Structural and Behavioral Biases in Process Comparison Using Models and Logs

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2021)

Abstract

Process models automatically discovered from event logs represent business process behavior in a compact graphical way. To compare process variants, e.g., to explore how the system’s behavior changes over time or between customer segments, analysts tend to visually compare conceptual process models discovered from different “slices” of the event log, solely relying on the structure of these models. However, the structural distance between two process models does not always reflect the behavioral distance between the underlying event logs and thus structural comparison should be applied with care. This paper aims to investigate relations between structural and behavioral process distances and explain when structural distance between two discovered process models can be used to assess the behavioral distance between the corresponding event logs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Although the model can be simplified (some gateways can be merged), we analyze BPMN models as they are provided by the discovery algorithms.

  2. 2.

    https://bitbucket.org/sivanov68/bpmndiffviz/src/master/.

  3. 3.

    https://github.com/jbpt/codebase/tree/master/jbpt-pm/entropia.

  4. 4.

    https://data.4tu.nl/.

References

  1. van der Aalst, W.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  2. Augusto, A., Armas-Cervantes, A., Conforti, R., Dumas, M., La Rosa, M., Reissner, D.: Abstract-and-compare: a family of scalable precision measures for automated process discovery. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 158–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_10

    Chapter  Google Scholar 

  3. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst. 59(2), 251–284 (2019). https://doi.org/10.1007/s10115-018-1214-x

    Article  Google Scholar 

  4. van Beest, N.R.T.P., Dumas, M., García-Bañuelos, L., La Rosa, M.: Log delta analysis: interpretable differencing of business process event logs. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 386–405. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_26

    Chapter  Google Scholar 

  5. Bolt, A., de Leoni, M., van der Aalst, W.M.P.: A visual approach to spot statistically-significant differences in event logs based on process metrics. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 151–166. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_10

    Chapter  Google Scholar 

  6. Bose, R., van der Aalst, W., Žliobaitė, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 154–171 (2014)

    Article  Google Scholar 

  7. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010). https://doi.org/10.1007/s10044-008-0141-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Ivanov, S., Kalenkova, A., van der Aalst, W.: BPMNDiffViz: a tool for BPMN models comparison. In: BPM Demo Session, BPM. CEUR-WS, vol. 1418, pp. 35–39 (2015)

    Google Scholar 

  9. Kalenkova, A., Polyvyanyy, A.: A spectrum of entropy-based precision and recall measurements between partially matching designed and observed processes. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H., Bouguettaya, A., Motahari, H. (eds.) ICSOC 2020. LNCS, vol. 12571, pp. 337–354. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65310-1_24

    Chapter  Google Scholar 

  10. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging: an approach to business process consolidation. ACM Trans. Softw. Eng. Methodol. 22(2), 1–42 (2013)

    Article  Google Scholar 

  11. La Rosa, M., et al.: Apromore: an advanced process model repository. Expert Syst. Appl. 38(6), 7029–7040 (2011)

    Article  Google Scholar 

  12. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 91–110. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5_6

    Chapter  Google Scholar 

  13. Pietsch, P., Wenzel, S.: Comparison of BPMN2 diagrams. In: Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 83–97. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33155-8_7

    Chapter  Google Scholar 

  14. Polyvyanyy, A., et al.: Entropia: a family of entropy-based conformance checking measures for process mining. In: ICPM Doctoral Consortium and Tool Demonstration Track. CEUR Workshop Proceedings, vol. 2703, pp. 39–42 (2020)

    Google Scholar 

  15. Polyvyanyy, A., Kalenkova, A.A.: Monotone conformance checking for partially matching designed and observed processes. In: ICPM, pp. 81–88. IEEE (2019)

    Google Scholar 

  16. Polyvyanyy, A., Solti, A., Weidlich, M., Di Ciccio, C., Mendling, J.: Monotone precision and recall measures for comparing executions and specifications of dynamic systems. ACM Trans. Softw. Eng. Methodol. 29(3), 1–41 (2020)

    Article  Google Scholar 

  17. Skobtsov, A., Kalenkova, A.: Efficient algorithms for finding differences between process models. In: 2019 Ivannikov Ispras Open Conference (ISPRAS), pp. 60–66 (2019)

    Google Scholar 

  18. Taymouri, F., La Rosa, M., Dumas, M., Maggi, F.: Business process variant analysis: Survey and classification. Knowl.-Based Syst. 211, 106557 (2021)

    Article  Google Scholar 

  19. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference computation of large models. In: ESEC/FSE, pp. 295–304. ACM, New York (2007)

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Australian Research Council Discovery Project DP180102839.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kalenkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalenkova, A., Polyvyanyy, A., Rosa, M.L. (2021). Structural and Behavioral Biases in Process Comparison Using Models and Logs. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds) Conceptual Modeling. ER 2021. Lecture Notes in Computer Science(), vol 13011. Springer, Cham. https://doi.org/10.1007/978-3-030-89022-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89022-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89021-6

  • Online ISBN: 978-3-030-89022-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics