Abstract
Implementation attacks like side-channel and fault attacks pose a considerable threat to cryptographic devices that are physically accessible by an attacker. As a consequence, devices like smart cards implement corresponding countermeasures like redundant computation and masking. Recently, statistically ineffective fault attacks (SIFA) were shown to be able to circumvent these classical countermeasure techniques. We present a new approach for verifying the SIFA protection of arbitrary masked implementations in both hardware and software. The proposed method uses Boolean dependency analysis, factorization, and known properties of masked computations to show whether the fault detection mechanism of redundant masked circuits can leak information about the processed secret values. We implemented this new method in a tool called Danira, which can show the SIFA resistance of cryptographic implementations like AES S-Boxes within minutes.
This work was supported by the Austrian Research Promotion Agency (FFG) via the FERMION project (grant number 867542, ICT of the Future), and the K-project DeSSnet (funded in the context of COMET). We refer to the online appendix [22] for the formal proofs of the presented lemmas and theorems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Operator \(\triangle \) signifies symmetric difference: \(A \triangle B = (A \cup B) \setminus (A \cap B)\).
- 2.
Danira’s code is available at https://extgit.iaik.tugraz.at/scos/danira.
References
Arribas, V., Nikova, S., Rijmen, V.: VerMI: verification tool for masked implementations. In: ICECS (2018)
Arribas, V., Wegener, F., Moradi, A., Nikova, S.: Cryptographic fault diagnosis using VerFI. IACR Cryptology ePrint Archive (2019)
Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s apprentice guide to fault attacks. Proc. IEEE 94(2) (2006)
Barthe, G., Belaïd, S., Cassiers, G., Fouque, P.-A., Grégoire, B., Standaert, F.-X.: maskVerif: automated verification of higher-order masking in presence of physical defaults. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 300–318. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29959-0_15
Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.: Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_18
Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.: Parallel implementations of masking schemes and the bounded moment leakage model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_19
Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259
Bloem, R., Gross, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.: Formal verification of masked hardware implementations in the presence of glitches. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 321–353. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_11
Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_4
Daemen, J., Dobraunig, C., Eichlseder, M., Groß, H., Mendel, F., Primas, R.: Protecting against statistical ineffective fault attacks. TCHES (2020)
Dhooghe, S., Nikova, S.: My gadget just cares for me - how NINA can prove security against combined attacks. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 35–55. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_3
Dobraunig, C., Eichlseder, M., Gross, H., Mangard, S., Mendel, F., Primas, R.: Statistical ineffective fault attacks on masked AES with fault countermeasures. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 315–342. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_11
Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.: SIFA: exploiting ineffective fault inductions on symmetric cryptography. TCHES (2018)
Dobraunig, C., Mangard, S., Mendel, F., Primas, R.: Fault attacks on nonce-based authenticated encryption: application to Keyak and Ketje. In: Cid, C., Jacobson, M., Jr. (eds.) SAC 2018. LNCS, vol. 11349, pp. 257–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10970-7_12
Faust, S., Grosso, V., Merino Del Pozo, S., Paglialonga, C., Standaert, F.-X.: Composable masking schemes in the presence of physical defaults & the robust probing model. TCHES (2018)
Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty ciphertexts only. In: FDTC (2013)
Gao, P., Xie, H., Zhang, J., Song, F., Chen, T.: Quantitative verification of masked arithmetic programs against side-channel attacks. In: TACAS (2019)
Gao, P., Zhang, J., Song, F., Wang, C.: Verifying and quantifying side-channel resistance of masked software implementations. TOSEM 28(3) (2019)
Gigerl, B., Hadzic, V., Primas, R., Mangard, S., Bloem, R.: COCO: co-design and co-verification of masked software implementations on CPUs. In: USENIX (2021)
Groß, H., Iusupov, R., Bloem, R.: Generic low-latency masking in hardware. IACR Transactions on Cryptographic Hardware and Embedded Systems (2018)
Gross, H., Mangard, S.: Reconciling \(d+1\) masking in hardware and software. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 115–136. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_6
Hadzic, V., Primas, R., Bloem, R.: Proving SIFA protection of masked redundant circuits. CoRR, abs/2107 (2021)
Hutter, M., Schmidt, J.-M.: The temperature side channel and heating fault attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 219–235. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_15
Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27
Knichel, D., Sasdrich, P., Moradi, A.: SILVER – statistical independence and leakage verification. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 787–816. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_26
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45418-7_17
Ramezanpour, K., Ampadu, P., Diehl, W.: A statistical fault analysis methodology for the ascon authenticated cipher. In: HOST (2019)
Saha, S., Jap, D., Roy, D.B., Chakraborty, A., Bhasin, S., Mukhopadhyay, D.: A framework to counter statistical ineffective fault analysis of block ciphers using domain transformation and error correction. TIFS (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hadžić, V., Primas, R., Bloem, R. (2021). Proving SIFA Protection of Masked Redundant Circuits. In: Hou, Z., Ganesh, V. (eds) Automated Technology for Verification and Analysis. ATVA 2021. Lecture Notes in Computer Science(), vol 12971. Springer, Cham. https://doi.org/10.1007/978-3-030-88885-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-88885-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88884-8
Online ISBN: 978-3-030-88885-5
eBook Packages: Computer ScienceComputer Science (R0)