[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Use of Semantic Technologies to Inform Progress Toward Zero-Carbon Economy

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2021 (ISWC 2021)

Abstract

To investigate the effect of possible changes to decarbonise the economy, a detailed picture of the current production system is needed. Material/energy flow analysis (MEFA) allows for building such a model. There are, however, prohibitive barriers to the integration and use of the diverse datasets necessary for a system-wide yet technically-detailed MEFA study. Herein we describe a methodology exploiting Semantic Web technologies to integrate and reason on top of this diverse production system data. We designed an ontology to model the structure of our data, and developed a declarative logic-based approach to address the many challenges arising from data integration and usage in this context. Further, this system is designed for easy access to the needed data in terms relevant for additional modelling and to be applied by non-experts, allowing for a wide use of our methodology. Our experiments with UK production data confirm the usefulness of this methodology through a case study based on the UK production system.

This work was supported by the EPSRC project UK FIRES (EP/S019111/1), the SIRIUS Centre for Scalable Data Access (Research Council of Norway, project no.: 237889), and Samsung Research UK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://ukfires.org.

  2. 2.

    https://ukfires.github.io/probs-ontology.

  3. 3.

    http://www.w3.org/TR/prov-o.

  4. 4.

    http://qudt.org/2.1/vocab/citation.

  5. 5.

    https://www.geonames.org/ontology.

  6. 6.

    https://www.w3.org/TR/owl-time.

  7. 7.

    Ref. [12], viewable at https://ukfires.github.io/probs-ISWC2021-example.

  8. 8.

    A detailed explanation of the reasons to prefer monotonic reasoning over a non-monotonic one is beyond the scope of this paper, but we want to point out that in the context of this paper we are running specific calculations over our data while non-monotonic approaches are typically designed to solve combinatorial problems.

  9. 9.

    https://www.sphinx-doc.org.

  10. 10.

    https://github.com/ricklupton/sphinx_probs_rdf.

  11. 11.

    https://www.oxfordsemantic.tech.

  12. 12.

    https://docs.oxfordsemantic.tech/command-line-reference.html.

  13. 13.

    https://github.com/ricklupton/rdfox_runner.

References

  1. Allwood, J.M., Ashby, M.F., Gutowski, T.G., Worrell, E.: Material efficiency: a white paper. Resour. Conserv. Recycl. 55(3), 362–381 (2011). https://doi.org/10.1016/j.resconrec.2010.11.002

    Article  Google Scholar 

  2. Arora, M., Raspall, F., Cheah, L., Silva, A.: Buildings and the circular economy: estimating urban mining, recovery and reuse potential of building components. Resour. Conserv. Recycl. 154, 104581 (2020). https://doi.org/10.1016/j.resconrec.2019.104581

    Article  Google Scholar 

  3. Brunner, P.H., Rechberger, H.: Practical Handbook of Material Flow Analysis. CRC/Lewis, Boca Raton (2004)

    Google Scholar 

  4. Cencic, O.: Nonlinear data reconciliation in material flow analysis with software STAN. Sustain. Environ. Res. 26(6), 291–298 (2016). https://doi.org/10.1016/j.serj.2016.06.002

    Article  Google Scholar 

  5. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Surveys in Computer Science. Springer, Heidelberg (1990). https://www.worldcat.org/oclc/20595273

  6. Committee on Climate Change: Biomass in a low-carbon economy. Technical report, CCC (2018). https://www.theccc.org.uk/wp-content/uploads/2018/11/Biomass-in-a-low-carbon-economy-CCC-2018.pdf

  7. Germano, S., Saunders, C., Lupton, R.: ukfires/probs-ontology: probs-ontology v1.5.2, July 2021. https://doi.org/10.5281/zenodo.5052739

  8. Ghose, A., Hose, K., Lissandrini, M., Weidema, B.P.: An open source dataset and ontology for product footprinting. In: Hitzler, P., et al. (eds.) ESWC 2019. LNCS, vol. 11762, pp. 75–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32327-1_15

    Chapter  Google Scholar 

  9. Hertwich, E., et al.: Nullius in verba: advancing data transparency in industrial ecology. J. Ind. Ecol. (2018). https://doi.org/10.1111/jiec.12738

  10. Janowicz, K., et al.: A minimal ontology pattern for life cycle assessment data. In: Proceedings of the Workshop on Ontology and Semantic Web Patterns (6th Edition), Wop 2015 (2015)

    Google Scholar 

  11. Kuczenski, B., Davis, C.B., Rivela, B., Janowicz, K.: Semantic catalogs for life cycle assessment data. J. Clean. Prod. 137, 1109–1117 (2016). https://doi.org/10.1016/j.jclepro.2016.07.216

    Article  Google Scholar 

  12. Lupton, R., Germano, S., Saunders, C.: ukfires/probs-ISWC2021-example: initial release for ISWC2021 paper, April 2021. https://doi.org/10.5281/zenodo.5052758

  13. Motik, B., Nenov, Y., Piro, R.E.F., Horrocks, I.: Incremental update of datalog materialisation: the backward/forward algorithm. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 25–30 January 2015, pp. 1560–1568. AAAI Press (2015)

    Google Scholar 

  14. Myers, R.J., Fishman, T., Reck, B.K., Graedel, T.E.: Unified materials information system (UMIS): an integrated material stocks and flows data structure. J. Ind. Ecolo. (2018). https://doi.org/10.1111/jiec.12730

  15. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-scalable RDF store. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 3–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_1

    Chapter  Google Scholar 

  16. Pauliuk, S., Heeren, N., Hasan, M.M., Müller, D.B.: A general data model for socioeconomic metabolism and its implementation in an industrial ecology data commons prototype. J. Ind. Ecol. (2019). https://doi.org/10.1111/jiec.12890

  17. Pauliuk, S., Majeau-Bettez, G., Müller, D.B.: A general system structure and accounting framework for socioeconomic metabolism. J. Ind. Ecol. 19(5), 728–741 (2015). https://doi.org/10.1111/jiec.12306

    Article  Google Scholar 

  18. Pauliuk, S., Majeau-Bettez, G., Müller, D.B., Hertwich, E.G.: Toward a practical ontology for socioeconomic metabolism. J. Ind. Ecol. 20(6), 1260–1272 (2016). https://doi.org/10.1111/jiec.12386

    Article  Google Scholar 

  19. Pauliuk, S., Majeau-Bettez, G., Mutel, C.L., Steubing, B., Stadler, K.: Lifting industrial ecology modeling to a new level of quality and transparency: a call for more transparent publications and a collaborative open source software framework. J. Ind. Ecol. 19(6), 937–949 (2015). https://doi.org/10.1111/jiec.12316

    Article  Google Scholar 

  20. Petavratzi, E., et al.: A roadmap towards monitoring the physical economy. Technical report, MinFuture Team, November 2018. https://minfuture.eu/downloads/D5.3_Roadmap.pdf

  21. Yan, B., et al.: An ontology for specifying spatiotemporal scopes in life cycle assessment. In: Diversity++@ ISWC, pp. 25–30 (2015)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support of José Azevedo and Christopher Cleaver, whose work on the UK production system case study has provided essential context for the development of this work, and the Oxford Semantic Technologies team for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Germano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Germano, S., Saunders, C., Horrocks, I., Lupton, R. (2021). Use of Semantic Technologies to Inform Progress Toward Zero-Carbon Economy. In: Hotho, A., et al. The Semantic Web – ISWC 2021. ISWC 2021. Lecture Notes in Computer Science(), vol 12922. Springer, Cham. https://doi.org/10.1007/978-3-030-88361-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88361-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88360-7

  • Online ISBN: 978-3-030-88361-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics