[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fast Imaging Sensor Identification

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2021)

Abstract

We consider identification of imaging devices by analysing images they produce. The problem is studied in the literature, yet the existing solutions are rather computationally demanding. We propose a high-speed algorithm for identification of imaging devices. The aim is to provide additional security by identification of legitimate imaging devices or an identification for forensics. The experimental evaluation confirms efficient identification of devices models and brands by the proposed algorithm, compared with the state-of-the-art method. Moreover, our algorithm is approximately two orders of magnitude faster, which is very important in resource-constrained IoT ecosystems or very large databases.

The project financed under the program of the Polish Minister of Science and Higher Education under the name “Regional Initiative of Excellence” in the years 2019–2022 project number 020/RID/2018/19, the amount of financing 12,000,000.00 PLN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, A., Singh, R., Vatsa, M.: Fingerprint sensor classification via mélange of handcrafted features. In: 23rd International Conference on Pattern Recognition, ICPR 2016, Cancún, Mexico, 4–8 December 2016, pp. 3001–3006 (2016)

    Google Scholar 

  2. Amerini, I., Caldelli, R., Cappellini, V., Picchioni, F., Piva, A.: Analysis of denoising filters for photo response non uniformity noise extraction in source camera identification. In: 2009 16th International Conference on Digital Signal Processing, pp. 1–7, July 2009

    Google Scholar 

  3. Baar, T., van Houten, W., Geradts, Z.J.M.H.: Camera identification by grouping images from database, based on shared noise patterns. CoRR abs/1207.2641 (2012). http://arxiv.org/abs/1207.2641

  4. Bondi, L., Baroffio, L., Guera, D., Bestagini, P., Delp, E.J., Tubaro, S.: First steps toward camera model identification with convolutional neural networks. IEEE Signal Process. Lett. 24(3), 259–263 (2017). https://doi.org/10.1109/LSP.2016.2641006

  5. Chen, Y., Huang, Y., Ding, X.: Camera model identification with residual neural network. In: 2017 IEEE International Conference on Image Processing, ICIP 2017, 17–20 September 2017, Beijing, China, pp. 4337–4341 (2017)

    Google Scholar 

  6. Deng, Z., Gijsenij, A., Zhang, J.: Source camera identification using auto-white balance approximation. In: IEEE International Conference on Computer Vision, ICCV 2011, 6–13 November 2011, Barcelona, Spain, pp. 57–64 (2011)

    Google Scholar 

  7. Dirik, A.E., Sencar, H.T., Memon, N.D.: Flatbed scanner identification based on dust and scratches over scanner platen. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2009, 19–24 April 2009, Taipei, Taiwan, pp. 1385–1388 (2009), https://doi.org/10.1109/ICASSP.2009.4959851

  8. Freire-Obregón, D., Narducci, F., Barra, S., Santana, M.C.: Deep learning for source camera identification on mobile devices. CoRR abs/1710.01257 (2017). http://arxiv.org/abs/1710.01257

  9. Fridrich, J.J., Goljan, M.: Determining approximate age of digital images using sensor defects. In: Media Forensics and Security III, San Francisco Airport, 24–26 January 2011, CA, USA, Proceedings, p. 788006 (2011), https://doi.org/10.1117/12.872198

  10. Galdi, C., Nappi, M., Dugelay, J.-L.: Combining hardwaremetry and biometry for human authentication via smartphones. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9280, pp. 406–416. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23234-8_38

    Chapter  Google Scholar 

  11. Galdi, C., Nappi, M., Dugelay, J.: Multimodal authentication on smartphones: combining iris and sensor recognition for a double check of user identity. Patt. Recogn. Lett. 82, 144–153 (2016). https://doi.org/10.1016/j.patrec.2015.09.009

  12. Gloe, T., Franz, E., Winkler, A.: Forensics for flatbed scanners. In: Security, Steganography, and Watermarking of Multimedia Contents IX, 28 January 2007, San Jose, CA, USA, p. 65051I (2007)

    Google Scholar 

  13. Goljan, M.: Digital camera identification from images - estimating false acceptance probability. In: Digital Watermarking, 7th International Workshop, IWDW 2008, 10–12 November 2008, Busan, Korea. Selected Papers, pp. 454–468 (2008)

    Google Scholar 

  14. Goljan, M., Chen, M., Comesaña, P., Fridrich, J.J.: Effect of compression on sensor-fingerprint based camera identification. In: Media Watermarking, Security, and Forensics 2016, 14–18 February 2016, San Francisco, California, USA, pp. 1–10 (2016)

    Google Scholar 

  15. Gou, H., Swaminathan, A., Wu, M.: Robust scanner identification based on noise features. In: Security, Steganography, and Watermarking of Multimedia Contents IX, 28 January 2007, San Jose, CA, USA, p. 65050S (2007)

    Google Scholar 

  16. Jiang, X., Wei, S., Zhao, R., Zhao, Y., Wu, X.: Camera fingerprint: a new perspective for identifying user’s identity. CoRR abs/1610.07728 (2016), http://arxiv.org/abs/1610.07728

  17. Kang, X., Li, Y., Qu, Z., Huang, J.: Enhancing source camera identification performance with a camera reference phase sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 7(2), 393–402 (2012). http://dx.doi.org/10.1109/TIFS.2011.2168214

  18. Khanna, N., Chiu, G.T., Allebach, J.P., Delp, E.J.: Forensic techniques for classifying scanner, computer generated and digital camera images. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2008, 30 March–4 April 2008, Caesars Palace, Las Vegas, Nevada, USA, pp. 1653–1656 (2008). https://doi.org/10.1109/ICASSP.2008.4517944

  19. Khanna, N., Chiu, G.T., Allebach, J.P., Delp, E.J.: Scanner identification with extension to forgery detection. In: Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, 27 January 2008, San Jose, CA, USA, p. 68190G (2008). https://doi.org/10.1117/12.772048

  20. Khanna, N., Mikkilineni, A.K., Chiu, G.T., Allebach, J.P., Delp, E.J.: Forensic classification of imaging sensor types. In: Security, Steganography, and Watermarking of Multimedia Contents IX, 28 January 2007, San Jose, CA, USA, p. 65050U (2007). https://doi.org/10.1117/12.705849

  21. Khanna, N., Mikkilineni, A.K., Chiu, G.T., Allebach, J.P., Delp, E.J.: Scanner identification using sensor pattern noise. In: Security, Steganography, and Watermarking of Multimedia Contents IX, 28 January 2007, San Jose, CA, USA, p. 65051K (2007)

    Google Scholar 

  22. Khanna, N., Mikkilineni, A.K., Delp, E.J.: Scanner identification using feature-based processing and analysis. IEEE Trans. Inf. Forensics Secur. 4(1), 123–139 (2009). https://doi.org/10.1109/TIFS.2008.2009604

  23. Kirchner, M., Johnson, C.: SPN-CNN: boosting sensor-based source camera attribution with deep learning. CoRR abs/2002.02927 (2020). https://arxiv.org/abs/2002.02927

  24. Li, R., Li, C., Guan, Y.: Inference of a compact representation of sensor fingerprint for source camera identification. Patt. Recogn. 74, 556–567 (2018). https://doi.org/10.1016/j.patcog.2017.09.027

  25. Lukás, J., Fridrich, J.J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006). https://doi.org/10.1109/TIFS.2006.873602

  26. Lyu, S., Farid, H.: How realistic is photorealistic? IEEE Trans. Signal Process. 53(2–2), 845–850 (2005). https://doi.org/10.1109/TSP.2004.839896(410)53

  27. Mandelli, S., Cozzolino, D., Bestagini, P., Verdoliva, L., Tubaro, S.: CNN-based fast source device identification. IEEE Signal Process. Lett. 27, 1285–1289 (2020). https://doi.org/10.1109/LSP.2020.3008855

  28. Mihçak, M.K., Kozintsev, I., Ramchandran, K.: Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising. In: Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1999, 15–19 March 1999, Phoenix, Arizona, USA, pp. 3253–3256 (1999). https://doi.org/10.1109/ICASSP.1999.757535

  29. Rafi, A.M., et al.: Application of DenseNet in camera model identification and post-processing detection. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019, 16–20 June 2019, Long Beach, CA, USA, pp. 19–28 (2019)

    Google Scholar 

  30. Tomioka, Y., Kitazawa, H.: Digital camera identification based on the clustered pattern noise of image sensors. In: Proceedings of the 2011 IEEE International Conference on Multimedia and Expo, ICME 2011, 11–15 July 2011, Barcelona, Catalonia, Spain, pp. 1–4 (2011). https://doi.org/10.1109/ICME.2011.6012060

  31. Tuama, A., Comby, F., Chaumont, M.: Camera model identification with the use of deep convolutional neural networks. In: 2016 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2016)

    Google Scholar 

  32. Tuama, A., Comby, F., Chaumont, M.: Camera model identification based machine learning approach with high order statistics features. In: 24th European Signal Processing Conference, EUSIPCO 2016, 29 August–2 September 2016, Budapest, Hungary, pp. 1183–1187 (2016)

    Google Scholar 

  33. Valsesia, D., Coluccia, G., Bianchi, T., Magli, E.: Compressed fingerprint matching and camera identification via random projections. IEEE Trans. Inf. Forensics Secur. 10(7), 1472–1485 (2015)

    Article  Google Scholar 

  34. Yang, P., Ni, R., Zhao, Y., Zhao, W.: Source camera identification based on content-adaptive fusion residual networks. Patt. Recogn. Lett. 119, 195–204 (2019). https://doi.org/10.1016/j.patrec.2017.10.016

  35. Yao, H., Qiao, T., Xu, M., Zheng, N.: Robust multi-classifier for camera model identification based on convolution neural network. IEEE Access 6, 24973–24982 (2018). https://doi.org/10.1109/ACCESS.2018.2832066

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Scherer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bernacki, J., Scherer, R. (2021). Fast Imaging Sensor Identification. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2021. Lecture Notes in Computer Science(), vol 12876. Springer, Cham. https://doi.org/10.1007/978-3-030-88081-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88081-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88080-4

  • Online ISBN: 978-3-030-88081-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics