[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

\(\mathrm 3D^2Unet\): 3D Deformable Unet for Low-Light Video Enhancement

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13021))

Included in the following conference series:

Abstract

Video recording suffers from noise, artifacts, low illumination, and weak contrast under low-light conditions. With such difficulties, it is challenging to recover a high-quality video from the corresponding low-light one. Previous works have proven that convolutional neural networks perform well on low-light image tasks, and these methods are further extended to the video processing field. However, existing video recovery methods fail to fully exploit the long-range spatial and temporal dependency simultaneously. In this paper, we propose a 3D deformable network based on Unet-like architecture (\(\mathrm 3D^2Unet\)) for low-light video enhancement, which recovers RGB formatted videos from RAW sensor data. Specifically, we adopt a spatial temporal adaptive block with 3D deformable convolutions to better adapt the varying features of videos along spatio-temporal dimensions. In addition, a global residual projection is employed to further boost learning efficiency. Experimental results demonstrate that our method outperforms state-of-the-art low-light video enhancement works.

Y. Fu—Student.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Celik, T., Tjahjadi, T.: Contextual and variational contrast enhancement. IEEE Trans. Image Process. 20(12), 3431–3441 (2011)

    Article  MathSciNet  Google Scholar 

  2. Chen, C., Chen, Q., Do, M.N., Koltun, V.: Seeing motion in the dark. In: Proceedings of International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  3. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  4. Chen, W., Wenjing, W., Wenhan, Y., Liu, J.: Deep retinex decomposition for low-light enhancement. In: Proceedings of British Machine Vision Conference (BMVC) (2018)

    Google Scholar 

  5. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  6. Lv, F., Lu, F., Wu, J., Lim, C.: Mbllen: low-light image/video enhancement using cnns. Proceedings of British Machine Vision Conference (BMVC) (2018)

    Google Scholar 

  7. Guo, C., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  8. Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2017)

    Article  MathSciNet  Google Scholar 

  9. Ibrahim, H., Pik Kong, N.S.: Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(4), 1752–1758 (2007)

    Article  Google Scholar 

  10. Jiang, H., Zheng, Y.: Learning to see moving objects in the dark. In: Proceedings of International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  11. Jiang, X., Yao, H., Zhang, S., Lu, X., Zeng, W.: Night video enhancement using improved dark channel prior. In: Proceedings of International Conference on Image Processing (ICIP), pp. 553–557 (2013)

    Google Scholar 

  12. Pang, J., Zhang, S., Bai, W.: A novel framework for enhancement of the low lighting video. In: 2017 IEEE Symposium on Computers and Communications (ISCC), pp. 1366–1371 (2017)

    Google Scholar 

  13. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  15. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)

    Article  Google Scholar 

  16. Lee, C., Lee, C., Kim, C.: Contrast enhancement based on layered difference representation of 2d histograms. IEEE Trans. Image Process. 22, 5372–5384 (2013)

    Article  Google Scholar 

  17. Lee, C., Shih, J., Lien, C., Han, C.: Adaptive multiscale retinex for image contrast enhancement. In: International Conference on Signal-Image Technology Internet-Based Systems, pp. 43–50 (2013)

    Google Scholar 

  18. Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018)

    Article  MathSciNet  Google Scholar 

  19. Lore, K.G., Akintayo, A., Sarkar, S.: Llnet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)

    Article  Google Scholar 

  20. Nakai, K., Hoshi, Y., Taguchi, A.: Color image contrast enhacement method based on differential intensity/saturation gray-levels histograms. In: International Symposium on Intelligent Signal Processing and Communication Systems, pp. 445–449 (2013)

    Google Scholar 

  21. Ooi, C.H., Pik Kong, N.S., Ibrahim, H.: Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Trans. Consum. Electron. 55(4), 2072–2080 (2009)

    Article  Google Scholar 

  22. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library (2019)

    Google Scholar 

  23. Ren, W., et al.: Low-light image enhancement via a deep hybrid network. IEEE Trans. Image Process. 28(9), 4364–4375 (2019)

    Article  MathSciNet  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., Chatterjee, J.: Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans. Consum. Electron. 56(4), 2475–2480 (2010)

    Article  Google Scholar 

  26. Tao, L., Zhu, C., Xiang, G., Li, Y., Jia, H., Xie, X.: Llcnn: a convolutional neural network for low-light image enhancement. In: Proceedings of Visual Communications and Image Processing (VCIP), pp. 1–4 (2017)

    Google Scholar 

  27. Wang, Y., Huang, H., Xu, Q., Liu, J., Liu, Y., Wang, J.: Practical deep raw image denoising on mobile devices. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 1–16 (2020)

    Google Scholar 

  28. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  29. Wei, K., Fu, Y., Yang, J., Huang, H.: A physics-based noise formation model for extreme low-light raw denoising. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  30. Xiang, Y., Fu, Y., Zhang, L., Huang, H.: An effective network with convlstm for low-light image enhancement. In: Pattern Recognition and Computer Vision, pp. 221–233 (2019)

    Google Scholar 

  31. Dong, X., et al: Fast efficient algorithm for enhancement of low lighting video. In: IEEE International Conference on Multimedia and Expo, pp. 1–6 (2011)

    Google Scholar 

  32. Ying, X., Wang, L., Wang, Y., Sheng, W., An, W., Guo, Y.: Deformable 3d convolution for video super-resolution. IEEE Signal Process. Lett. 27, 1500–1504 (2020)

    Article  Google Scholar 

  33. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new image contrast enhancement algorithm using exposure fusion framework. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017. LNCS, vol. 10425, pp. 36–46. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64698-5_4

    Chapter  Google Scholar 

  34. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new low-light image enhancement algorithm using camera response model. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops (2017)

    Google Scholar 

  35. Yue, H., Cao, C., Liao, L., Chu, R., Yang, J.: Supervised raw video denoising with a benchmark dataset on dynamic scenes. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61827901 and No. 62088101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Fu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12546 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, Y., Zou, Y., Fu, Y. (2021). \(\mathrm 3D^2Unet\): 3D Deformable Unet for Low-Light Video Enhancement. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13021. Springer, Cham. https://doi.org/10.1007/978-3-030-88010-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88010-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88009-5

  • Online ISBN: 978-3-030-88010-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics