[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Local Mutual Metric Network for Few-Shot Image Classification

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13019))

Included in the following conference series:

Abstract

Few-shot image classification aims to recognize unseen categories with only a few labeled training samples. Recent metric-based approaches tend to represent each sample with a high-level semantic representation and make decisions according to the similarities between the query sample and support categories. However, high-level concepts are identified to be poor at generalizing to novel concepts that differ from previous seen concepts due to domain shifts. Moreover, most existing methods conduct one-way instance-level metric without involving more discriminative local relations. In this paper, we propose a Local Mutual Metric Network (LM2N), which combines low-level structural representations with high-level semantic representations by unifying all abstraction levels of the embedding network to achieve a balance between discrimination and generalization ability. We also propose a novel local mutual metric strategy to collect and reweight local relations in a bidirectional manner. Extensive experiments on five benchmark datasets (i.e. miniImageNet, tieredImageNet and three fine-grained datasets) show the superiority of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, K., Shelhamer, E., Shin, H., Tenenbaum, J.: Infinite mixture prototypes for few-shot learning. In: ICML, pp. 232–241 (2019)

    Google Scholar 

  2. Antoniou, A., Edwards, H., Storkey, A.: How to train your maml. In: ICLR (2018)

    Google Scholar 

  3. Chen, H., Li, H., Li, Y., Chen, C.: Multi-scale adaptive task attention network for few-shot learning. arXiv preprint arXiv:2011.14479 (2020)

  4. Chen, H., Li, H., Li, Y., Chen, C.: Multi-level metric learning for few-shot image recognition. arXiv preprint arXiv:2103.11383 (2021)

  5. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. In: ICLR (2019)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  7. Fe-Fei, L., et al.: A bayesian approach to unsupervised one-shot learning of object categories. In: ICCV, pp. 1134–1141 (2003)

    Google Scholar 

  8. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML, pp. 1126–1135 (2017)

    Google Scholar 

  9. Hao, F., He, F., Cheng, J., Wang, L., Cao, J., Tao, D.: Collect and select: semantic alignment metric learning for few-shot learning. In: ICCV, pp. 8460–8469 (2019)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  11. Hochreiter, S., Younger, A.S., Conwell, P.R.: Learning to learn using gradient descent. In: International Conference on Artificial Neural Networks, pp. 87–94 (2001)

    Google Scholar 

  12. Hou, R., Chang, H., Ma, B., Shan, S., Chen, X.: Cross attention network for few-shot classification. In: NeurIPS, pp. 4003–4014 (2019)

    Google Scholar 

  13. Huang, H., Zhang, J., Zhang, J., Xu, J., Wu, Q.: Low-rank pairwise alignment bilinear network for few-shot fine-grained image classification. IEEE Trans. Multimedia 23, 1666–1680 (2020)

    Article  Google Scholar 

  14. Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.F.: Novel dataset for fine-grained image categorization: stanford dogs. In: CVPR Workshop on FGVC, vol. 2 (2011)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  16. Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)

    Google Scholar 

  17. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: ICCV Workshop, pp. 554–561 (2013)

    Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS, vol. 25, pp. 1097–1105 (2012)

    Google Scholar 

  19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  20. Li, W., Wang, L., Huo, J., Shi, Y., Gao, Y., Luo, J.: Asymmetric distribution measure for few-shot learning, pp. 2957–2963 (2020)

    Google Scholar 

  21. Li, W., Wang, L., Xu, J., Huo, J., Gao, Y., Luo, J.: Revisiting local descriptor based image-to-class measure for few-shot learning. In: CVPR, pp. 7260–7268 (2019)

    Google Scholar 

  22. Li, W., Xu, J., Huo, J., Wang, L., Gao, Y., Luo, J.: Distribution consistency based covariance metric networks for few-shot learning. In: AAAI, pp. 8642–8649 (2019)

    Google Scholar 

  23. Li, Y., Li, H., Chen, H., Chen, C.: Hierarchical representation based query-specific prototypical network for few-shot image classification. arXiv preprint arXiv:2103.11384 (2021)

  24. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)

    Google Scholar 

  25. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive meta-learner. In: ICLR (2018)

    Google Scholar 

  26. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS, vol. 32, pp. 8026–8037 (2019)

    Google Scholar 

  27. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. In: ICLR (2018)

    Google Scholar 

  28. Satorras, V.G., Estrach, J.B.: Few-shot learning with graph neural networks. In: ICLR (2018)

    Google Scholar 

  29. Simon, C., Koniusz, P., Nock, R., Harandi, M.: Adaptive subspaces for few-shot learning. In: CVPR, pp. 4136–4145 (2020)

    Google Scholar 

  30. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NeurIPS, pp. 4080–4090 (2017)

    Google Scholar 

  31. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: CVPR, pp. 403–412 (2019)

    Google Scholar 

  32. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: CVPR, pp. 1199–1208 (2018)

    Google Scholar 

  33. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? In: ECCV, pp. 266–282 (2020)

    Google Scholar 

  34. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: NeurIPS, pp. 3637–3645 (2016)

    Google Scholar 

  35. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)

    Google Scholar 

  36. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: convolutional block attention module. In: ECCV, pp. 3–19 (2018)

    Google Scholar 

  37. Zhang, C., Li, H., Chen, C., Qian, Y., Zhou, X.: Enhanced group sparse regularized nonconvex regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2020.3033994

    Article  Google Scholar 

  38. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR, pp. 2881–2890 (2017)

    Google Scholar 

  39. Zhu, W., Li, W., Liao, H., Luo, J.: Temperature network for few-shot learning with distribution-aware large-margin metric. Pattern Recogn. 112, 107797 (2021)

    Article  Google Scholar 

  40. Zhu, Y., Liu, C., Jiang, S.: Multi-attention meta learning for few-shot fine-grained image recognition. In: IJCAI, pp. 1090–1096 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by National Natural Science Foundation of China (Nos. 62176116, 71732003, 62073160, and 71671086) and the National Key Research and Development Program of China (Nos. 2018YFB1402600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaxiong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Li, H., Chen, H., Chen, C. (2021). Local Mutual Metric Network for Few-Shot Image Classification. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13019. Springer, Cham. https://doi.org/10.1007/978-3-030-88004-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88004-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88003-3

  • Online ISBN: 978-3-030-88004-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics