[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Language Adaptation for Speaker Recognition Systems Using Contrastive Learning

  • Conference paper
  • First Online:
Speech and Computer (SPECOM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12997))

Included in the following conference series:

Abstract

In this article we propose to study several approaches to adapt a system between two languages. To train the state of the art x-vector Speaker Verification system, we need a huge amount of labeled speech data. If this constraint is satisfied in English (due to Voxceleb), it is not in our target domain: French. We use a supervised Contrastive Learning to transfer knowledge between source and target domain. Among the two other proposed adaptation approaches (Multilingual Learning and Transfert Learning) we show that the one based on Contrastive Learning gives the best performance: about 30% relative gain in term of Equal Error Rate with respect to the baseline system. We also show the robustness of the Contrastive Learning with respect to the duration (from very short to short) as well as to distortion presence (noise, reverberation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajili, M., Bonastre, J.F., Kahn, J., Rossato, S., Bernard, G.: FABIOLE, a speech database for forensic speaker comparison. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pp. 726–733. European Language Resources Association (ELRA), Portorož, May 2016. https://www.aclweb.org/anthology/L16-1115

  2. Alam, M.J., Bhattacharya, G., Kenny, P.: Speaker verification in mismatched conditions with frustratingly easy domain adaptation. In: Proceedings of Speaker Odyssey: The Speaker and Language Recognition Workshop, pp. 176–180 (2018). https://doi.org/10.21437/Odyssey.2018-25

  3. Ardila, R., et al.: Common voice: a massively-multilingual speech corpus. In: Proceedings of the 12th Language Resources and Evaluation Conference (LREC 2020) (2020)

    Google Scholar 

  4. Bousquet, P., Rouvier, M.: On robustness of unsupervised domain adaptation for speaker recognition. In: Kubin, G., Kacic, Z. (eds.) Interspeech 2019, 20th Annual Conference of the International Speech Communication Association, Graz, Austria, 15–19 September 2019, pp. 2958–2962. ISCA (2019). https://doi.org/10.21437/Interspeech.2019-1524

  5. Brummer, N., et al.: But+ omilia system description voxceleb speaker recognition challenge 2020 (2020)

    Google Scholar 

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. CoRR abs/2002.05709 (2020). https://arxiv.org/abs/2002.05709

  7. Chung, J.S., Nagrani, A., Zisserman, A.: Voxceleb2: deep speaker recognition. CoRR abs/1806.05622 (2018). http://arxiv.org/abs/1806.05622

  8. Ganvir, S., Lal, N.: Automatic speaker recognition using transfer learning approach of deep learning models. In: 2021 6th International Conference on Inventive Computation Technologies (ICICT), pp. 595–601 (2021). https://doi.org/10.1109/ICICT50816.2021.9358539

  9. Giraudel, A., Carré, M., Mapelli, V., Kahn, J., Galibert, O., Quintard, L.: The REPERE corpus: a multimodal corpus for person recognition, pp. 1102–1107 (2012). http://www.lrec-conf.org/proceedings/lrec2012/summaries/707.html

  10. Guillermo Barbadillo, S.P.: Veridas solution for SdSV challenge technical report (2019)

    Google Scholar 

  11. Kahn, J., Galibert, O., Quintard, L., Carré, M., Giraudel, A., Joly, P.: A presentation of the repere challenge. In: 2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 1–6 (2012). https://doi.org/10.1109/CBMI.2012.6269851

  12. Ko, T., Peddinti, V., Povey, D., Seltzer, M.L., Khudanpur, S.: A study on data augmentation of reverberant speech for robust speech recognition. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5220–5224 (2017). https://doi.org/10.1109/ICASSP.2017.7953152

  13. Lee, K.A., Wang, Q., Koshinaka, T.: The coral+ algorithm for unsupervised domain adaptation of PLDA. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5821–5825. IEEE (2019)

    Google Scholar 

  14. Lee, K.A., et al.: The NEC-TT 2018 speaker verification system. In: Interspeech, pp. 4355–4359 (2019)

    Google Scholar 

  15. Pierre-Michel Bousquet, M.R.: The LIA system description for SdSV challenge task 2 (2019). https://sdsvc.github.io/2020/descriptions/Team42_Task2.pdf

  16. Povey, D., et al.: The kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE Signal Processing Society, December 2011. iEEE Catalog No.: CFP11SRW-USB

    Google Scholar 

  17. Rouvier, M., Bousquet, P., Ajili, M., Kheder, W.B., Matrouf, D., Bonastre, J.: LIA system description for NIST SRE 2016 (2016). http://arxiv.org/abs/1612.05168

  18. Snyder, D., Chen, G., Povey, D.: MUSAN: a music, speech, and noise corpus. CoRR abs/1510.08484 (2015). http://arxiv.org/abs/1510.08484

  19. Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., Khudanpur, S.: X-vectors: robust DNN embeddings for speaker recognition. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5329–5333 (2018). https://doi.org/10.1109/ICASSP.2018.8461375

  20. Thienpondt, J., Desplanques, B., Demuynck, K.: The IDLAB voxceleb speaker recognition challenge 2020 system description. CoRR abs/2010.12468 (2020). https://arxiv.org/abs/2010.12468

  21. Torgashov, N.: ID R&D system description to voxceleb speaker recognition challenge 2020 (2020)

    Google Scholar 

  22. Villalba, J., et al.: The JHU-MIT system description for NIST SRE18 (2018). https://sdsvc.github.io/2020/descriptions/Team10_Both.pdf

  23. Villalba, J., Dehak, N.: The JHU system description for SDSV2020 challenge (2019)

    Google Scholar 

  24. Wang, Q., Okabe, K., Lee, K.A., Koshinaka, T.: A generalized framework for domain adaptation of PLDA in speaker recognition. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6619–6623. IEEE (2020)

    Google Scholar 

  25. Xia, W., Zhang, C., Weng, C., Yu, M., Yu, D.: Self-supervised text-independent speaker verification using prototypical momentum contrastive learning (2020). https://arxiv.org/abs/2012.07178

  26. Zeinali, H., Wang, S., Silnova, A., Matejka, P., Plchot, O.: BUT system description to voxceleb speaker recognition challenge 2019. CoRR abs/1910.12592 (2019). http://arxiv.org/abs/1910.12592

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickael Rouvier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brignatz, V., Duret, J., Matrouf, D., Rouvier, M. (2021). Language Adaptation for Speaker Recognition Systems Using Contrastive Learning. In: Karpov, A., Potapova, R. (eds) Speech and Computer. SPECOM 2021. Lecture Notes in Computer Science(), vol 12997. Springer, Cham. https://doi.org/10.1007/978-3-030-87802-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87802-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87801-6

  • Online ISBN: 978-3-030-87802-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics