Abstract
Data integration and exchange are becoming more crucial with the increasing amount of distributed systems and ever-growing amounts of data. This need is also widely known in medical research and not yet comprehensively solved. Practical implementation steps will demonstrate the different challenges in the context of the National Medical Informatics Initiative in Germany. Top-down versus bottom-up approaches as general methods of standard-based data integration in healthcare will be discussed and illustrated in the process of building up Medical Data Integration Centers. As practical examples, the use cases Infection Control, Cardiology, and Molecular Tumor Board, will be presented. Finally, limitations that prevent the use of theoretically recommended data integration methods in the particular field of medical informatics are illustrated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Snyder, J.M., Pawloski, J.A., Poisson, L.M.: Developing real-world evidence-ready datasets: time for clinician engagement. Curr. Oncol. Rep. 22(5), 1–8 (2020). https://doi.org/10.1007/s11912-020-00904-z
Panch, T., Mattie, H., Celi, L.A.: The “inconvenient truth” about AI in healthcare. npj Digit. Med. 2(1), 1–3 (2019). https://doi.org/10.1038/s41746-019-0155-4
Hübner, U., Esdar, M., Hüsers, J., Liebe, J., Naumann, L., Thye, J., et al.: IT-Report Gesundheitswesen, Schwerpunkt - Wie reif ist die Gesundheits-IT aus Anwenderperspektive? Schriftenreihe der Hochschule Osnabrück, Forschungsgruppe Informatik im Gesundheitswesen (IGW) (2020)
Lehne, M., Sass, J., Essenwanger, A., Schepers, J., Thun, S.: Why digital medicine depends on interoperability. NPJ Digit. Med. 2, 79 (2019). https://doi.org/10.1038/s41746-019-0158-1
Feldman, K., Johnson, R.A., Chawla, N.V.: The state of data in healthcare: path towards standardization. J. Healthc. Inform. Res. 2(3), 248–271 (2018). https://doi.org/10.1007/s41666-018-0019-8
Council, N.R.: Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease, Washington, DC . The National Academies Press (2011). https://doi.org/10.17226/13284
Amos, L., Anderson, D., Brody, S., Ripple, A., Humphreys, B.L.: UMLS users and uses: a current overview. J. Am. Med. Inform. Assoc. 27, 1606–1611 (2020). https://doi.org/10.1093/jamia/ocaa084
Ghazvinian, A., Noy, N.F., Musen, M.A.: How orthogonal are the OBO foundry ontologies? J. Biomed. Semant. 2(Suppl. 2), S2 (2011). https://doi.org/10.1186/2041-1480-2-S2-S2
Hulsen, T., Jamuar, S.S., Moody, A.R., Karnes, J.H., Varga, O., Hedensted, S., et al.: From big data to precision medicine. Front. Med. 6, 34 (2019). https://doi.org/10.3389/fmed.2019.00034
Semler, S.C., Wissing, F., Heyder, R.: German medical informatics initiative. Methods Inf. Med. 57(S 1), e50–e56 (2018). https://doi.org/10.3414/ME18-03-0003
IEEE: IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. IEEE Std. 610, pp. 1–217, January 1991. https://doi.org/10.1109/IEEESTD.1991.106963
Bezerra, C.A.C., Araujo, A., Rocha, B., Pereira, V., Ferraz, F.: Middleware for heterogeneous healthcare data exchange: a survey. In: ICSEA 2015, pp. 409–414 (2015)
Benson, T., Grieve, G.: Principles of Health Interoperability: FHIR, HL7 and SNOMED CT. Health Information Technology Standards, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-56883-2
Goossen, W., Goossen-Baremans, A., van der Zel, M.: Detailed clinical models: a review. Healthc. Inform. Res. 16(4), 201–214 (2010). https://doi.org/10.4258/hir.2010.16.4.201
Hong, N., Wang, K., Wu, S., Shen, F., Yao, L., Jiang, G.: An interactive visualization tool for HL7 FHIR specification browsing and profiling. J. Healthc. Inform. Res. 3(3), 329–344 (2019). https://doi.org/10.1007/s41666-018-0043-8
Wulff, A., Haarbrandt, B., Marschollek, M.: Clinical knowledge governance framework for nationwide data infrastructure projects. In: eHealth, pp. 196–203 (2018)
LeSueur, D.: 5 Reasons Healthcare Data is Unique and Difficult to Measure (2014). https://www.healthcatalyst.com/insights/5-reasons-healthcare-data-is-difficult-to-measure Accessed 9 Apr 2021
Ulrich, H., Kock, A.K., Duhm-Harbeck, P., Habermann, J.K., Ingenerf, J.: Metadata repository for improved data sharing and reuse based on HL7 FHIR. In: MIE, pp. 162–166 (2016)
Kock-Schoppenhauer, A.K., Kroll, B., Lambarki, M., Ulrich, H., Stahl-Toyota, S., Habermann, J.K., et al.: One step away from technology but one step towards domain experts-MDRBridge: a template-based ISO 11179-compliant metadata processing pipeline. Methods Inf. Med. 58(S 02), e72–e79 (2019). https://doi.org/10.1055/s-0039-3399579
Mate, S., Kampf, M., Rödle, W., Kraus, S., Proynova, R., Silander, K., et al.: Pan-European data harmonization for biobanks in ADOPT BBMRI-ERIC. Appl. Clin. Inform. 10(04), 679–692 (2019)
Haarbrandt, B., Schreiweis, B., Rey, S., Sax, U., Scheithauer, S., Rienhoff, O., et al.: HiGHmed - an open platform approach to enhance care and research across institutional boundaries. Methods Inf. Med. 57(S 01), e66–e81 (2018). https://doi.org/10.3414/ME18-02-0002
Prokosch, H.U., Acker, T., Bernarding, J., Binder, H., Boeker, M., Boerries, M., et al.: MIRACUM: medical informatics in research and care in university medicine: a large data sharing network to enhance translational research and medical care. Methods Inf. Med. 57(S 01), e82–e91 (2018). https://doi.org/10.3414/ME17-02-0025
Bild, R., Bialke, M., Buckow, K., Ganslandt, T., Ihrig, K., Jahns, R., et al.: Towards a comprehensive and interoperable representation of consent-based data usage permissions in the German medical informatics initiative. BMC Med. Inf. Decis. Mak. 20 (2020). https://doi.org/10.1186/s12911-020-01138-6
Buechner, P., Hinderer, M., Unberath, P., Metzger, P., Boeker, M., Acker, T., et al.: Requirements analysis and specification for a molecular tumor board platform based on cBioPortal. Diagnostics 10(2), 93 (2020). https://doi.org/10.3390/diagnostics10020093
Kapsner, L.A., Kampf, M.O., Seuchter, S.A., Gruendner, J., Gulden, C., Mate, S., et al.: Reduced rate of inpatient hospital admissions in 18 German university hospitals during the COVID-19 Lockdown. Front. Public Health 8, 1018 (2021)
Miloslavskaya, N., Tolstoy, A.: Big data, fast data and data lake concepts. Procedia Comput. Sci. 88, 300–305 (2016)
Allen, M., Cervo, D.: Chapter 9 - Data quality management. In: Allen, M., Cervo, D. (eds.) Multi-Domain Master Data Management, pp. 131–160. Morgan Kaufmann (2015). https://doi.org/10.1016/B978-0-12-800835-5.00009-9
International Standards Organization: ISO 13606–1:2008 - Health informatics - electronic health record communication - Part 1: reference model. https://www.iso.org/standard/67868.html Accessed 9 Apr 2021
Sass, J., Bartschke, A., Lehne, M., Essenwanger, A., Rinaldi, E., Rudolph, S., et al.: The german corona consensus dataset (GECCO): a standardized dataset for COVID-19 research in university medicine and beyond. BMC Med. Inform. Decis. Mak. 20(1) (2020). https://doi.org/10.1186/s12911-020-01374-w
Vasileiou, E., Simpson, C., Robertson, C., Shi, T., Kerr, S., Agrawal, U., et al.: Effectiveness of first dose of COVID-19 vaccines against hospital admissions in Scotland: national prospective cohort study of 5.4 million people. Preprint, February 2021. https://doi.org/10.2139/ssrn.3789264
Schmid, T.: Costs of treating cardiovascular events in Germany: a systematic literature review. Health Econ. Rev. 5(1), 27 (2015). https://doi.org/10.1186/s13561-015-0063-5
Faller, H., Steinbüchel, T., Schowalter, M., Spertus, J.A., Störk, S., Angermann, C.E.: Der Kansas City Cardiomyopathy Questionnaire (KCCQ) - ein neues krankheitsspezifisches Messinstrument zur Erfassung der Lebensqualität bei chronischer Herzinsuffizienz: Psychometrische Prüfung der deutschen Version. PPmP - Psychotherapie \(\cdot \) Psychosomatik \(\cdot \) Medizinische Psychologie 55(3/4), 200–208 (2005). https://doi.org/10.1055/s-2004-834597
Heinze, O., Brandner, A., Bergh, B.: Establishing a personal electronic health record in the Rhine-Neckar region. Stud. Health Technol. Inform. 150, 119–119 (2009)
Singer, J., Irmisch, A., Ruscheweyh, H.J., Singer, F., Toussaint, N.C., Levesque, M.P., et al.: Bioinformatics for precision oncology. Brief. Bioinform. 20(3), 778–788 (2019). https://doi.org/10.1093/bib/bbx143
Hoefflin, R., Geißler, A.L., Fritsch, R., Claus, R., Wehrle, J., Metzger, P., et al.: Personalized clinical decision making through implementation of a molecular tumor board: a German single-center experience. JCO Precis. Oncol., 1–16 (2018). https://doi.org/10.1200/PO.18.00105
Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., et al.: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data: figure 1. Cancer Discov. 2(5), 401–404 (2012). https://doi.org/10.1158/2159-8290.CD-12-0095
Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., et al.: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6(269), pl1-pl1 (2013). https://doi.org/10.1126/scisignal.2004088
Bruford, E.A., Braschi, B., Denny, P., Jones, T.E.M., Seal, R.L., Tweedie, S.: Guidelines for human gene nomenclature. Nat. Genet. 52(8), 754–758 (2020). https://doi.org/10.1038/s41588-020-0669-3
Reimer, N., Ulrich, H., Busch, H., Kock-Schoppenhauer, A.K., Ingenerf, J.: openEHR mapper - a tool to fusion clinical and genomic data using the openEHR standard. In: Studies in Health Technology and Informatics (2021)
Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Foundations of Data Exchange. Cambridge University Press (2014). https://doi.org/10.1017/CBO9781139060158
do Espírito Santo, J.M., Medeiros, C.B.: Semantic interoperability of clinical data. In: Da Silveira, M., Pruski, C., Schneider, R. (eds.) DILS 2017. LNCS, vol. 10649, pp. 29–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69751-2_4
Dugas, M., Jöckel, K.H., Friede, T., Gefeller, O., Kieser, M., Marschollek, M., et al.: Memorandum “open metadata”. Open access to documentation forms and item catalogs in healthcare. Methods Inf. Med. 54(4), 376–378 (2015). https://doi.org/10.3414/ME15-05-0007
Golshan, B., Halevy, A., Mihaila, G., Tan, W.C.: Data integration: after the teenage years. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, pp. 101–106. Association for Computing Machinery, New York, May 2017. https://doi.org/10.1145/3034786.3056124
Senthilkumar, S., Rai, B.K., Meshram, A.A., Gunasekaran, A., Chandrakumarmangalam, S.: Big data in healthcare management: a review of literature. Am. J. Theor. Appl. Bus. 4(2), 57–69 (2018)
Névéol, A., Dalianis, H., Velupillai, S., Savova, G., Zweigenbaum, P.: Clinical natural language processing in languages other than English: opportunities and challenges. J. Biomed. Semant. 9(1), 12 (2018). https://doi.org/10.1186/s13326-018-0179-8
Dinu, V., Nadkarni, P.: Guidelines for the effective use of entity-attribute-value modeling for biomedical databases. Int. J. Med. Inf. 76(11–12), 769–779 (2007). https://doi.org/10.1016/j.ijmedinf.2006.09.023
Groppe, S.: Data Management and Query Processing in Semantic Web Databases. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19357-6
Kock-Schoppenhauer, A.K., Kamann, C., Ulrich, H., Duhm-Harbeck, P., Ingenerf, J.: Linked data applications through ontology based data access in clinical research. Stud. Health Technol. Inform. 235, 131–135 (2017)
Verborgh, R., Vander Sande, M.: The Semantic Web identity crisis: in search of the trivialities that never were. Semant. Web J. 11(1), 19–27 (2020). https://doi.org/10.3233/SW-190372
Acknowledgements
This work is funded by the German Federal Ministry of Education and Research (BMBF) as part of the Medical Informatics Initiative Germany, Grand IDs 01ZZ1802Z and 01ZZ1802T.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kock-Schoppenhauer, AK. et al. (2021). Medical Data Engineering – Theory and Practice. In: Bellatreche, L., Chernishev, G., Corral, A., Ouchani, S., Vain, J. (eds) Advances in Model and Data Engineering in the Digitalization Era. MEDI 2021. Communications in Computer and Information Science, vol 1481. Springer, Cham. https://doi.org/10.1007/978-3-030-87657-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-87657-9_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87656-2
Online ISBN: 978-3-030-87657-9
eBook Packages: Computer ScienceComputer Science (R0)