[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Infant Brain Developmental Connectivity for Cognitive Score Prediction

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2021)

Abstract

During infancy, the human brain develops rapidly in terms of structure, function and cognition. The tight connection between cognitive skills and brain morphology motivates us to focus on individual level cognitive score prediction using longitudinal structural MRI data. In the early postnatal stage, the massive brain region connections contain some intrinsic topologies, such as small-worldness and modular organization. Accordingly, graph convolutional networks can be used to incorporate different region combinations to predict the infant cognitive scores. Nevertheless, the definition of the brain region connectivity remains a problem. In this work, we propose a crafted layer, the Inter-region Connectivity Module (ICM), to effectively build brain region connections in a data-driven manner. To further leverage the critical cues hidden in the development patterns, we choose path signature as the sequential data descriptor to extract the essential dynamic information of the region-wise growth trajectories. With these region-wise developmental features and the inter-region connectivity, a novel Cortical Developmental Connectivity Network (CDC-Net) is built. Experiments on a longitudinal infant dataset within 3 time points and hundreds of subjects show our superior performance, outperforming classical machine learning based methods and deep learning based algorithms.

This work is supported by Science and Technology Program of Guangzhou (2018-1002-SF-0561) and Natural Science Foundation of Guangdong Province (2018A030313295) to X Z.

Y. Li and J. Cheng—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.ibeat.cloud.

  2. 2.

    https://www.nitrc.org/projects/infantsurfatlas/.

References

  1. Adeli, E., Meng, Y., Li, G., et al.: Multi-task prediction of infant cognitive scores from longitudinal incomplete neuroimaging data. NeuroImage 185, 783–792 (2019)

    Article  Google Scholar 

  2. Chevyrev, I., Kormilitzin, A.: A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788 (2016)

  3. Cho, K., Van Merriënboer, B., Gulcehre, C., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  4. Desikan, R.S., Ségonne, F., Fischl, B., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3), 968–980 (2006)

    Article  Google Scholar 

  5. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9(2), 195–207 (1999)

    Article  Google Scholar 

  6. Ghribi, O., Li, G., Lin, W., et al: Multi-regression based supervised sample selection for predicting baby connectome evolution trajectory from neonatal timepoint. Med. Image Anal. 68, 101853 (2021)

    Article  Google Scholar 

  7. Griffanti, L., Rolinski, M., Szewczyk-Krolikowski, K., et al.: Challenges in the reproducibility of clinical studies with resting state FMRI: an example in early Parkinson’s disease. NeuroImage 124, 704–713 (2016)

    Article  Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  9. Kagan, J., Herschkowitz, N.: A Young Mind in a Growing Brain. Psychology Press, Hove (2006)

    Book  Google Scholar 

  10. Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. SMC-15(4), 580–585 (1985)

    Google Scholar 

  11. Kidger, P., Bonnier, P., Perez Arribas, I., et al.: Deep signature transforms. Adv. Neural Inf. Process. Syst. 32, 3105–3115 (2019)

    Google Scholar 

  12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of International Conference on Learning Representations (2017)

    Google Scholar 

  13. Lai, S., Zhu, Y., Jin, L.: Encoding Pathlet and SIFT features with bagged VLAD for historical writer identification. IEEE Trans. Inf. Forensics Secur. 15, 3553–3566 (2020)

    Article  Google Scholar 

  14. Li, C., Zhang, X., Liao, L., et al.: Skeleton-based gesture recognition using several fully connected layers with path signature features and temporal transformer module. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8585–8593 (2019)

    Google Scholar 

  15. Li, G., Nie, J., Wu, G., et al.: Consistent reconstruction of cortical surfaces from longitudinal brain MR images. NeuroImage 59(4), 3805–3820 (2012)

    Article  Google Scholar 

  16. Li, G., Wang, L., Shi, F., et al.: Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J. Neurosci. 34(12), 4228–4238 (2014)

    Article  Google Scholar 

  17. Liao, L., Zhang, X., Li, C.: Multi-path convolutional neural network based on rectangular kernel with path signature features for gesture recognition. In: Proceedings of IEEE Visual Communications and Image Processing. IEEE (2019)

    Google Scholar 

  18. Seidlitz, J., Váša, F., Shinn, M., et al.: Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97(1), 231–247 (2018)

    Article  Google Scholar 

  19. Smith, S.M., Vidaurre, D., Beckmann, C.F., et al.: Functional connectomics from resting-state FMRI. Trends Cogn. Sci. 17(12), 666–682 (2013)

    Article  Google Scholar 

  20. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004). https://doi.org/10.1023/B:STCO.0000035301.49549.88

  21. Svetnik, V., Liaw, A., Tong, C., et al.: Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 43(6), 1947–1958 (2003)

    Article  Google Scholar 

  22. Veličković, P., Cucurull, G., Casanova, A., et al.: Graph attention networks. In: Proceedings of International Conference on Learning Representations (2018)

    Google Scholar 

  23. Zhang, C., Adeli, E., Wu, Z., et al.: Infant brain development prediction with latent partial multi-view representation learning. IEEE Trans. Med. Imaging 38(4), 909–918 (2018)

    Article  Google Scholar 

  24. Zhang, X., Cheng, J., Ni, H., et al.: Infant cognitive scores prediction with multi-stream attention-based temporal path signature features. In: Martel, A.L. et al. (eds.) Medical Image Computing and Computer Assisted Intervention, vol. 12267, pp. 134–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_14

  25. Zhao, T., Xu, Y., He, Y.: Graph theoretical modeling of baby brain networks. NeuroImage 185, 711–727 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y. et al. (2021). Learning Infant Brain Developmental Connectivity for Cognitive Score Prediction. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87589-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87588-6

  • Online ISBN: 978-3-030-87589-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics