[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Joint Face Detection and Landmark Localization Based on an Extremely Lightweight Network

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Abstract

Face detection and landmark localization are necessary steps in most face applications. At present, the method based on deep learning has shown obvious advantages in effect. However, most neural networks are computationally expensive and require special hardware for acceleration. To widely applied in real-world tasks, it is necessary to design a tiny model with fewer parameters, less computation cost, and fine performance. Therefore, we propose an extremely lightweight backbone for building a YOLOv3-style joint face detection and landmark localization model while compressing the parameters to the 0.15M level. We compare the proposed face detector with representative methods on the public benchmark. The results show that our proposed method can achieve performance much close to the representative face detector while a two-thirds reduction in the numbers of parameters and the computing costs. Moreover, our model has a lower failure rate (10%) of landmark localization and more robust.

This research was partially supported by National Basic Enhancement Research Program of China under key basic research project, National Natural Science Foundation (NSFC) of China under project No. 61906206, 62071478.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Microsoft NNI(neural network intelligence) (2021). https://github.com/Microsoft/nni

  2. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: 25th annual conference on Neural Information Processing Systems (NIPS 2011), vol. 24. Neural Information Processing Systems Foundation (2011)

    Google Scholar 

  3. Chi, C., Zhang, S., Xing, J., Lei, Z., Li, S.Z., Zou, X.: Selective refinement network for high performance face detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8231–8238 (2019)

    Google Scholar 

  4. Deng, J., Guo, J., Ververas, E., Kotsia, I., Zafeiriou, S.: Retinaface: Single-shot multi-level face localisation in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5203–5212 (2020)

    Google Scholar 

  5. Feng, Z.H., Kittler, J., Awais, M., Huber, P., Wu, X.J.: Wing loss for robust facial landmark localisation with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2235–2245 (2018)

    Google Scholar 

  6. Feng, Z.H., Kittler, J., Awais, M., Wu, X.J.: Rectified wing loss for efficient and robust facial landmark localisation with convolutional neural networks. Int. J. Comput. Vis. 128, 1–20 (2019)

    Google Scholar 

  7. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  8. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  9. Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1867–1874 (2014)

    Google Scholar 

  10. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

  11. Koestinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV workshops), pp. 2144–2151. IEEE (2011)

    Google Scholar 

  12. Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: Light-head r-cnn: In defense of two-stage object detector. arXiv preprint arXiv:1711.07264 (2017)

  13. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  14. Najibi, M., Samangouei, P., Chellappa, R., Davis, L.S.: SSH: single stage headless face detector. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4875–4884 (2017)

    Google Scholar 

  15. Qin, Z., et al.: ThunderNet: towards real-time generic object detection on mobile devices. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6718–6727 (2019)

    Google Scholar 

  16. Ranjan, R., Patel, V.M., Chellappa, R.: Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 121–135 (2017)

    Article  Google Scholar 

  17. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  19. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)

    Google Scholar 

  20. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  21. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3476–3483 (2013)

    Google Scholar 

  22. Tang, X., Du, D.K., He, Z., Liu, J.: Pyramidbox: a context-assisted single shot face detector. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 797–813 (2018)

    Google Scholar 

  23. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  24. Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: a face detection benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5525–5533 (2016)

    Google Scholar 

  25. Zhang, C., Xu, X., Tu, D.: Face detection using improved faster rcnn. arXiv preprint arXiv:1802.02142 (2018)

  26. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Sig. Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  27. Zhu, S., Li, C., Loy, C.C., Tang, X.: Unconstrained face alignment via cascaded compositional learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3409–3417 (2016)

    Google Scholar 

  28. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maojun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Chen, C., Zhang, M., Li, J., Xu, W. (2021). Joint Face Detection and Landmark Localization Based on an Extremely Lightweight Network. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12889. Springer, Cham. https://doi.org/10.1007/978-3-030-87358-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87358-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87357-8

  • Online ISBN: 978-3-030-87358-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics