[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learnable Multi-scale Fourier Interpolation for Sparse View CT Image Reconstruction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12906))

Abstract

Image reconstruction in sparse view CT is a challenging ill-posed inverse problem, which aims at reconstructing a high-quality image from few and noisy measurements. As a prominent tool in the recent development of CT reconstruction, deep neural network (DNN) is mostly used as a denoising post-process or a regularization sub-module in some optimization unrolling method. As the problem of CT reconstruction essentially is about how to convert discrete Fourier transform in polar coordinates to its counterpart in Cartesian coordinates, this paper proposed to directly learn an interpolation scheme, modeled by a multi-scale DNN, for predicting 2D Fourier coefficients in Cartesian coordinates from the available ones in polar coordinates. The experiments showed that, in comparison to existing DNN-based solutions, the proposed DNN-based Fourier interpolation method not only provided the state-of-the-art performance, but also is much more computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 37(6), 1322–1332 (2018)

    Article  Google Scholar 

  2. Buzug, T.M.: Computed tomography. In: Springer Handbook of Medical Technology, pp. 311–342. Springer, Berlin (2011)

    Google Scholar 

  3. Chen, H., et al.: LEARN: learned experts’ assessment-based reconstruction network for sparse-data CT. IEEE Trans. Med. Imaging 37(6), 1333–1347 (2018)

    Article  Google Scholar 

  4. Chen, H., et al.: Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017)

    Article  Google Scholar 

  5. Ding, Q., Chen, G., Zhang, X., Huang, Q., Ji, H., Gao, H.: Low-dose CT with deep learning regularization via proximal forward–backward splitting. Phys. Med. Biol. 65(12), 125009 (2020)

    Google Scholar 

  6. Ding, Q., Nan, Y., Gao, H., Ji, H.: Deep learning with adaptive hyper-parameters for low-dose CT image reconstruction. IEEE Trans. Comput. Imaging, 1–1 (2021). https://doi.org/10.1109/TCI.2021.3093003

  7. Dong, B., Shen, Z., et al.: MRA based wavelet frames and applications. IAS Lecture Notes Series, Summer Program on “The Mathematics of Image Processing”, Park City Mathematics Institute. 19 (2010)

    Google Scholar 

  8. Gupta, H., Jin, K.H., Nguyen, H.Q., McCann, M.T., Unser, M.: CNN-based projected gradient descent for consistent CT image reconstruction. IEEE Trans. Med. Imaging 37(6), 1440–1453 (2018)

    Article  Google Scholar 

  9. Hara, A.K., Paden, R.G., Silva, A.C., Kujak, J.L., Lawder, H.J., Pavlicek, W.: Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am. J. Roentgenol. 193(3), 764–771 (2009)

    Article  Google Scholar 

  10. He, J., et al.: Optimizing a parameterized plug-and-play ADMM for iterative low-dose CT reconstruction. IEEE Trans. Med. Imaging 38(2), 371–382 (2018)

    Article  Google Scholar 

  11. Jia, X., Dong, B., Lou, Y., Jiang, S.B.: GPU-based iterative cone-beam CT reconstruction using tight frame regularization. Phys. Med. Biol. 56(13), 3787 (2011)

    Article  Google Scholar 

  12. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Med. Imaging 26(9), 4509–4522 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Katsura, M., et al.: Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique. Eur. Radiol. 22(8), 1613–1623 (2012)

    Article  Google Scholar 

  14. Radon, J.: 1.1 Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. Sächs. Akad. Wiss., Math. -Nat. KI. 69, 262–277 (1917)

    Google Scholar 

  15. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777 (2008)

    Article  Google Scholar 

  16. Silva, A.C., Lawder, H.J., Hara, A., Kujak, J., Pavlicek, W.: Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. Am. J. Roentgenol. 194(1), 191–199 (2010)

    Article  Google Scholar 

  17. Sun, J., Li, H., Xu, Z., et al.: Deep ADMM-Net for compressive sensing MRI. In: Advances in Neural Information Processing Systems, pp. 10–18 (2016)

    Google Scholar 

  18. Wang, G.: A perspective on deep imaging. IEEE Access 4, 8914–8924 (2016)

    Article  Google Scholar 

  19. Xu, Q., Yu, H., Mou, X., Zhang, L., Hsieh, J., Wang, G.: Low-dose X-ray CT reconstruction via dictionary learning. IEEE Trans. Med. Imaging 31(9), 1682–1697 (2012)

    Article  Google Scholar 

  20. Ye, J.C., Han, Y., Cha, E.: Deep convolutional framelets: a general deep learning framework for inverse problems. SIAM J. Imaging Sci. 11(2), 991–1048 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zeng, G.L.: Medical Image Reconstruction: A Conceptual Tutorial. Springer, New York (2010)

    Book  Google Scholar 

  22. Zhang, X.-Q., Froment, J.: Constrained total variation minimization and application in computerized tomography. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 456–472. Springer, Heidelberg (2005). https://doi.org/10.1007/11585978_30

    Chapter  Google Scholar 

  23. Zhang, X., Froment, J.: Total variation based fourier reconstruction and regularization for computer tomography. In: IEEE Nuclear Science Symposium Conference Record, 2005, vol. 4, pp. 2332–2336. IEEE (2005)

    Google Scholar 

Download references

Acknowledgment

This work was supported by NSFC (No.11771288, No.12090024), Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102) and Singapore MOE Academic Research Fund (MOE2017-T2-2-156, R-146-000-315-114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, Q., Ji, H., Gao, H., Zhang, X. (2021). Learnable Multi-scale Fourier Interpolation for Sparse View CT Image Reconstruction. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics