[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Temporal Feature Fusion with Sampling Pattern Optimization for Multi-echo Gradient Echo Acquisition and Image Reconstruction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Quantitative imaging in MRI usually involves acquisition and reconstruction of a series of images at multi-echo time points, which possibly requires more scan time and specific reconstruction technique compared to conventional qualitative imaging. In this work, we focus on optimizing the acquisition and reconstruction process of multi-echo gradient echo pulse sequence for quantitative susceptibility mapping as one important quantitative imaging method in MRI. A multi-echo sampling pattern optimization block extended from LOUPE-ST is proposed to optimize the k-space sampling patterns along echoes. Besides, a recurrent temporal feature fusion block is proposed and inserted into a backbone deep ADMM network to capture the signal evolution along echo time during reconstruction. Experiments show that both blocks help improve multi-echo image reconstruction performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, H.K., Mani, M.P., Jacob, M.: Modl: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2018)

    Article  Google Scholar 

  2. Bahadir, C.D., Wang, A.Q., Dalca, A.V., Sabuncu, M.R.: Deep-learning-based optimization of the under-sampling pattern in MRI. IEEE Trans. Comput. Imaging 6, 1139–1152 (2020)

    Article  Google Scholar 

  3. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)

  4. Boyd, S., Parikh, N., Chu, E.: Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Now Publishers Inc. (2011)

    Google Scholar 

  5. Chan, S.H., Wang, X., Elgendy, O.A.: Plug-and-play ADMM for image restoration: fixed-point convergence and applications. IEEE Trans. Comput. Imaging 3(1), 84–98 (2016)

    Article  MathSciNet  Google Scholar 

  6. Deichmann, R.: Fast high-resolution t1 mapping of the human brain. Magn. Reson. Med. Offic. J. Int. Soc. Magn. Reson. Med. 54(1), 20–27 (2005)

    Google Scholar 

  7. Deoni, S.C., Peters, T.M., Rutt, B.K.: High-resolution t1 and t2 mapping of the brain in a clinically acceptable time with despot1 and despot2. Magn. Reson. Med. Offic. J. Int. Soc. Mag. Reson. Med. 53(1), 237–241 (2005)

    Google Scholar 

  8. Gözcü, B., et al.: Learning-based compressive MRI. IEEE Trans. Med. Imaging 37(6), 1394–1406 (2018)

    Article  Google Scholar 

  9. Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (grappa). Magn. Reson. Med. Offic. J. Int. Soc. Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Google Scholar 

  10. Haldar, J.P., Kim, D.: Oedipus: an experiment design framework for sparsity-constrained MRI. IEEE Trans. Med. imaging 38(7), 1545–1558 (2019)

    Article  Google Scholar 

  11. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Liu, J., et al.: Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage 59(3), 2560–2568 (2012)

    Article  Google Scholar 

  14. Liu, T., Wisnieff, C., Lou, M., Chen, W., Spincemaille, P., Wang, Y.: Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping. Magn. Reson. Med. 69(2), 467–476 (2013)

    Article  Google Scholar 

  15. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. Offic. J. Int. Soc. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  16. Murphy, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M.: Fast \(l_1\)-spirit compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging 31(6), 1250–1262 (2012)

    Article  Google Scholar 

  17. Otazo, R., Kim, D., Axel, L., Sodickson, D.K.: Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn. Reson. Med. 64(3), 767–776 (2010)

    Article  Google Scholar 

  18. Peng, X., Ying, L., Liu, Y., Yuan, J., Liu, X., Liang, D.: Accelerated exponential parameterization of t2 relaxation with model-driven low rank and sparsity priors (morasa). Magn. Reson. Med. 76(6), 1865–1878 (2016)

    Article  Google Scholar 

  19. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med. Offic. J. Int. Soc. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  20. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2018)

    Article  Google Scholar 

  21. Roman, B., Hansen, A., Adcock, B.: On asymptotic structure in compressed sensing. arXiv preprint arXiv:1406.4178 (2014)

  22. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2017)

    Article  Google Scholar 

  23. Uecker, M., et al.: Espirit–an eigenvalue approach to autocalibrating parallel MRI: where sense meets grappa. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

  24. Wang, Y., Liu, T.: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn. Reson. Med. 73(1), 82–101 (2015)

    Article  MathSciNet  Google Scholar 

  25. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  26. Yu, H., Shimakawa, A., McKenzie, C.A., Brodsky, E., Brittain, J.H., Reeder, S.B.: Multiecho water-fat separation and simultaneous r estimation with multifrequency fat spectrum modeling. Magn. Reson. Med. Offic. J. Int. Soc. Magn. Reson. Med. 60(5), 1122–1134 (2008)

    Article  Google Scholar 

  27. Zhang, J., et al.: Extending LOUPE for K-space under-sampling pattern optimization in Multi-coil MRI. In: Deeba, F., Johnson, P., Würfl, T., Ye, J.C. (eds.) MLMIR 2020. LNCS, vol. 12450, pp. 91–101. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61598-7_9

    Chapter  Google Scholar 

  28. Zhang, T., Pauly, J.M., Levesque, I.R.: Accelerating parameter mapping with a locally low rank constraint. Magn. Reson. Med. 73(2), 655–661 (2015)

    Article  Google Scholar 

  29. Zhang, T., Pauly, J.M., Vasanawala, S.S., Lustig, M.: Coil compression for accelerated imaging with cartesian sampling. Magn. Reson. Med. 69(2), 571–582 (2013)

    Article  Google Scholar 

  30. Zhao, B., Lu, W., Hitchens, T.K., Lam, F., Ho, C., Liang, Z.P.: Accelerated MR parameter mapping with low-rank and sparsity constraints. Magn. Reson. Med. 74(2), 489–498 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwei Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 498 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J. et al. (2021). Temporal Feature Fusion with Sampling Pattern Optimization for Multi-echo Gradient Echo Acquisition and Image Reconstruction. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics