Abstract
Quantitative imaging in MRI usually involves acquisition and reconstruction of a series of images at multi-echo time points, which possibly requires more scan time and specific reconstruction technique compared to conventional qualitative imaging. In this work, we focus on optimizing the acquisition and reconstruction process of multi-echo gradient echo pulse sequence for quantitative susceptibility mapping as one important quantitative imaging method in MRI. A multi-echo sampling pattern optimization block extended from LOUPE-ST is proposed to optimize the k-space sampling patterns along echoes. Besides, a recurrent temporal feature fusion block is proposed and inserted into a backbone deep ADMM network to capture the signal evolution along echo time during reconstruction. Experiments show that both blocks help improve multi-echo image reconstruction performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, H.K., Mani, M.P., Jacob, M.: Modl: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2018)
Bahadir, C.D., Wang, A.Q., Dalca, A.V., Sabuncu, M.R.: Deep-learning-based optimization of the under-sampling pattern in MRI. IEEE Trans. Comput. Imaging 6, 1139–1152 (2020)
Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)
Boyd, S., Parikh, N., Chu, E.: Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Now Publishers Inc. (2011)
Chan, S.H., Wang, X., Elgendy, O.A.: Plug-and-play ADMM for image restoration: fixed-point convergence and applications. IEEE Trans. Comput. Imaging 3(1), 84–98 (2016)
Deichmann, R.: Fast high-resolution t1 mapping of the human brain. Magn. Reson. Med. Offic. J. Int. Soc. Magn. Reson. Med. 54(1), 20–27 (2005)
Deoni, S.C., Peters, T.M., Rutt, B.K.: High-resolution t1 and t2 mapping of the brain in a clinically acceptable time with despot1 and despot2. Magn. Reson. Med. Offic. J. Int. Soc. Mag. Reson. Med. 53(1), 237–241 (2005)
Gözcü, B., et al.: Learning-based compressive MRI. IEEE Trans. Med. Imaging 37(6), 1394–1406 (2018)
Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (grappa). Magn. Reson. Med. Offic. J. Int. Soc. Magn. Reson. Med. 47(6), 1202–1210 (2002)
Haldar, J.P., Kim, D.: Oedipus: an experiment design framework for sparsity-constrained MRI. IEEE Trans. Med. imaging 38(7), 1545–1558 (2019)
Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Liu, J., et al.: Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage 59(3), 2560–2568 (2012)
Liu, T., Wisnieff, C., Lou, M., Chen, W., Spincemaille, P., Wang, Y.: Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping. Magn. Reson. Med. 69(2), 467–476 (2013)
Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. Offic. J. Int. Soc. Magn. Reson. Med. 58(6), 1182–1195 (2007)
Murphy, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M.: Fast \(l_1\)-spirit compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging 31(6), 1250–1262 (2012)
Otazo, R., Kim, D., Axel, L., Sodickson, D.K.: Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn. Reson. Med. 64(3), 767–776 (2010)
Peng, X., Ying, L., Liu, Y., Yuan, J., Liu, X., Liang, D.: Accelerated exponential parameterization of t2 relaxation with model-driven low rank and sparsity priors (morasa). Magn. Reson. Med. 76(6), 1865–1878 (2016)
Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med. Offic. J. Int. Soc. Magn. Reson. Med. 42(5), 952–962 (1999)
Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2018)
Roman, B., Hansen, A., Adcock, B.: On asymptotic structure in compressed sensing. arXiv preprint arXiv:1406.4178 (2014)
Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2017)
Uecker, M., et al.: Espirit–an eigenvalue approach to autocalibrating parallel MRI: where sense meets grappa. Magn. Reson. Med. 71(3), 990–1001 (2014)
Wang, Y., Liu, T.: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn. Reson. Med. 73(1), 82–101 (2015)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Yu, H., Shimakawa, A., McKenzie, C.A., Brodsky, E., Brittain, J.H., Reeder, S.B.: Multiecho water-fat separation and simultaneous r estimation with multifrequency fat spectrum modeling. Magn. Reson. Med. Offic. J. Int. Soc. Magn. Reson. Med. 60(5), 1122–1134 (2008)
Zhang, J., et al.: Extending LOUPE for K-space under-sampling pattern optimization in Multi-coil MRI. In: Deeba, F., Johnson, P., Würfl, T., Ye, J.C. (eds.) MLMIR 2020. LNCS, vol. 12450, pp. 91–101. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61598-7_9
Zhang, T., Pauly, J.M., Levesque, I.R.: Accelerating parameter mapping with a locally low rank constraint. Magn. Reson. Med. 73(2), 655–661 (2015)
Zhang, T., Pauly, J.M., Vasanawala, S.S., Lustig, M.: Coil compression for accelerated imaging with cartesian sampling. Magn. Reson. Med. 69(2), 571–582 (2013)
Zhao, B., Lu, W., Hitchens, T.K., Lam, F., Ho, C., Liang, Z.P.: Accelerated MR parameter mapping with low-rank and sparsity constraints. Magn. Reson. Med. 74(2), 489–498 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, J. et al. (2021). Temporal Feature Fusion with Sampling Pattern Optimization for Multi-echo Gradient Echo Acquisition and Image Reconstruction. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-87231-1_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87230-4
Online ISBN: 978-3-030-87231-1
eBook Packages: Computer ScienceComputer Science (R0)