[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Depth estimation from monocular images is an important task in localization and 3D reconstruction pipelines for bronchoscopic navigation. Various supervised and self-supervised deep learning-based approaches have proven themselves on this task for natural images. However, the lack of labeled data and the bronchial tissue’s feature-scarce texture make the utilization of these methods ineffective on bronchoscopic scenes. In this work, we propose an alternative domain-adaptive approach. Our novel two-step structure first trains a depth estimation network with labeled synthetic images in a supervised manner; then adopts an unsupervised adversarial domain feature adaptation scheme to improve the performance on real images. The results of our experiments show that the proposed method improves the network’s performance on real images by a considerable margin and can be employed in 3D reconstruction pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, L., Tang, W., John, N.W., Wan, T.R., Zhang, J.J.: Slam-based dense surface reconstruction in monocular minimally invasive surgery and its application to augmented reality. Comput. Methods Prog. Biomed. 158, 135–146 (2018)

    Article  Google Scholar 

  2. Chen, R.J., Bobrow, T.L., Athey, T., Mahmood, F., Durr, N.J.: Slam endoscopy enhanced by adversarial depth prediction. arXiv preprint arXiv:1907.00283 (2019)

  3. Choi, S., Zhou, Q.Y., Koltun, V.: Robust reconstruction of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5556–5565 (2015)

    Google Scholar 

  4. Deutsche Gesellschaft für Internistische Intensivmedizin und Notfallmedizin (DGIIN): “bronchoskopie anatomie der unteren atemwege”. Accessed 30 Feb 2021. [YouTube video]. https://www.youtube.com/watch?v=xPE4V8bU-Lk

  5. Eid, M., et al.: Cinematic rendering in ct: a novel, lifelike 3d visualization technique. Am. J. Roentgenol. 209(2), 370–379 (2017)

    Article  Google Scholar 

  6. Facil, J.M., Ummenhofer, B., Zhou, H., Montesano, L., Brox, T., Civera, J.: Cam-convs: camera-aware multi-scale convolutions for single-view depth. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11826–11835 (2019)

    Google Scholar 

  7. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3828–3838 (2019)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Hofstad, E.F., et al.: Intraoperative localized constrained registration in navigated bronchoscopy. Med. Phys. 44(8), 4204–4212 (2017)

    Article  Google Scholar 

  11. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 239–248. IEEE (2016)

    Google Scholar 

  14. Lavasani, S.N., et al.: Bronchoscope motion tracking using centerline-guided gaussian mixture model in navigated bronchoscopy. Phys. Med. Biol. 66(2), 025001 (2021)

    Google Scholar 

  15. Liu, Q.H., Ben, S.Q., Xia, Y., Wang, K.P., Huang, H.D.: Evolution of transbronchial needle aspiration technique. J. Thorac. Dis. 7(Suppl 4), S224 (2015)

    Google Scholar 

  16. Liu, R., Lehman, J., Molino, P., Such, F.P., Frank, E., Sergeev, A., Yosinski, J.: An intriguing failing of convolutional neural networks and the coordconv solution. In: Advances in Neural Information Processing Systems, pp. 9605–9616 (2018)

    Google Scholar 

  17. Liu, X., et al.: Dense depth estimation in monocular endoscopy with self-supervised learning methods. IEEE Trans. Med. Imaging 39(5), 1438–1447 (2019)

    Article  Google Scholar 

  18. Liu, X., et al.: Reconstructing sinus anatomy from endoscopic video – towards a radiation-free approach for quantitative longitudinal assessment. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 3–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_1

    Chapter  Google Scholar 

  19. Mahmood, F., Chen, R., Durr, N.J.: Unsupervised reverse domain adaptation for synthetic medical images via adversarial training. IEEE Trans. Med. Imaging 37(12), 2572–2581 (2018)

    Article  Google Scholar 

  20. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML (2010)

    Google Scholar 

  21. Park, J., Zhou, Q.Y., Koltun, V.: Colored point cloud registration revisited. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 143–152 (2017)

    Google Scholar 

  22. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Schwarz, Y., Greif, J., Becker, H.D., Ernst, A., Mehta, A.: Real-time electromagnetic navigation bronchoscopy to peripheral lung lesions using overlaid ct images: the first human study. Chest 129(4), 988–994 (2006)

    Article  Google Scholar 

  25. Shen, M., Gu, Y., Liu, N., Yang, G.Z.: Context-aware depth and pose estimation for bronchoscopic navigation. IEEE Robot. Autom. Lett. 4(2), 732–739 (2019)

    Article  Google Scholar 

  26. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2020. CA: Cancer J. Clin. 70(1), 7–30 (2020)

    Google Scholar 

  27. Sinha, A., Liu, X., Reiter, A., Ishii, M., Hager, G.D., Taylor, R.H.: Endoscopic navigation in the absence of CT imaging. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 64–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_8

    Chapter  Google Scholar 

  28. Ummenhofer, B., et al.: Demon: depth and motion network for learning monocular stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5038–5047 (2017)

    Google Scholar 

  29. Vankadari, M., Garg, S., Majumder, A., Kumar, S., Behera, A.: Unsupervised monocular depth estimation for night-time images using adversarial domain feature adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 443–459. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_27

    Chapter  Google Scholar 

  30. Visentini-Scarzanella, M., Sugiura, T., Kaneko, T., Koto, S.: Deep monocular 3D reconstruction for assisted navigation in bronchoscopy. Int. J. Comput. Assist. Radiol. Surg. 12(7), 1089–1099 (2017)

    Article  Google Scholar 

  31. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mert Asim Karaoglu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 116 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karaoglu, M.A. et al. (2021). Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics