Abstract
The current advancement of Artificial Intelligence (AI) combined with other digitalization efforts significantly impacts service ecosystems. Artificial intelligence has a substantial impact on new opportunities for the co-creation of value and the development of intelligent service ecosystems. Motivated by experiences and observations from digitalization projects, this paper presents new methodological perspectives and experiences from academia and practice on architecting intelligent service ecosystems and explores the impact of artificial intelligence through real cases supporting an ongoing validation. Digital enterprise architecture models serve as an integral representation of business, information, and technological perspectives of intelligent service-based enterprise systems to support management and development. This paper focuses on architectural models for intelligent service ecosystems, showing the fundamental business mechanism of AI-based value co-creation, the corresponding digital architecture, and management models. The focus of this paper presents the key architectural model perspectives for the development of intelligent service ecosystems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
McAfee, A., Brynjolfsson, E.: Machine, Platform, Crowd: Harnessing Our Digital Future. W. W. Norton & Company, New York (2017)
Schmidt, R., Alt, R., Zimmermann, A.: A conceptual model for assistant platforms. In: 54th Hawaii International Conference on System Sciences (HICSS), Wailea, pp. 4024–4033 (2021)
Vargo, S.L., Lusch, R.F.: Institutions and axioms: an extension and update of service-dominant logic. J. Acad. Mark. Sci. 44(1), 5–23 (2015). https://doi.org/10.1007/s11747-015-0456-3
Newman, S.: Building Microservices: [Designing Fine-Grained Systems]. O’Reilly, Beijing (2015)
Subramaniam, M., Iyer, B., Venkatraman, V.: Competing in digital ecosystems. Bus. Horiz. 62, 83–94 (2019)
Vargo, S.L., Lusch, R.F.: Evolving to a new dominant logic for marketing. J. Market. 68, 1–17 (2004)
Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia (2016)
Poole, D.L., Mackworth, A.K.: Artificial Intelligence: Foundations of Computational Agents. Cambridge University Press, Cambridge (2017)
Brynjolfsson, E., McAfee, A.: The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. W. W. Norton & Company, New York (2014)
Rao, A.S., Verweij, G.: Sizing the prize what’s the real value of AI for your business and how can you capitalize? PwC (2017)
Siddike, M.A.K., Hidaka, K., Kohda, Y.: Technology as actors in service systems. In: Proceedings of the 54th Hawaii International Conference on System Sciences, pp. 1030–1039 (2021)
Lusch, R.F., Nambisan, S.: Service innovation: a service-dominant logic perspective. MIS Q. 39, 155–175 (2015). https://doi.org/10.25300/MISQ/2015/39.1.07
Maglio, P., Spohrer, J.: Fundamentals of service science. J. Acad. Mark. Sci. 36, 18–20 (2008). https://doi.org/10.1007/s11747-007-0058-9
Maglio, P., Vargo, S., Caswell, N., Spohrer, J.: The service system is the basic abstraction of service science. IseB 7, 395–406 (2009). https://doi.org/10.1007/s10257-008-0105-1
Munakata, T.: Fundamentals of the New Artificial Intelligence: Neural, Evolutionary, Fuzzy and More. Springer, London (2008). https://doi.org/10.1007/978-1-84628-839-5
Skansi, S.: Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73004-2
Hwang, K.: Cloud Computing for Machine Learning and Cognitive Applications. MIT Press, Cambridge (2017)
Kearns, M., Roth, A.: The Ethical Algorithm: The Science of Socially Aware Algorithm Design. Oxford University Press, New York (2019)
Lankhorst, M.: Enterprise Architecture at Work. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53933-0
Nurmi, J., Pulkkinen, M., Seppänen, V., Penttinen, K.: Systems approaches in the enterprise architecture field of research: a systematic literature review. In: Aveiro, D., Guizzardi, G., Guerreiro, S., Guédria, W. (eds.) EEWC 2018. LNBIP, vol. 334, pp. 18–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06097-8_2
Zimmermann, A., Schmidt, R., Sandkuhl, K., Jugel, D., Schweda, C., Bogner, J.: Architecting digital products and services. In: Zimmermann, A., Schmidt, R., Jain, L.C. (eds.) Architecting the Digital Transformation. ISRL, vol. 188, pp. 181–197. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49640-1_10
Niemi, E., Pekkola, S.: Using enterprise architecture artefacts in an organisation. Enterp. Inf. Syst. 11, 313–338 (2017)
Wan, J., et al.: A manufacturing big data solution for active preventive maintenance. IEEE Trans. Industr. Inf. 13, 2039–2047 (2017)
Hagiu, A.: Strategic decisions for multisided platforms. MIT Sloan Manage. Rev. 55, 71–80 (2014)
Alstyne, M.W.V., Parker, G.G., Choudary, S.P.: Pipelines, platforms, and the new rules of strategy. Harvard Bus. Rev. 94, 54–62 (2016)
Cusumano, M.A., Gawer, A., Yoffie, D.B.: The future of platforms. MIT Sloan Manage. Rev. Spec. Issue Disrupt. 61, 46–54 (2020)
Parker, G., van Alstyne, M.W., Choudary, S.P.: Platform Revolution: How Networked Markets are Transforming the Economy–and How to Make Them Work for You. Norton & Company, New York (2016)
Galvagno, M., Dalli, D.: Theory of value co-creation: a systematic literature review. Manag. Serv. Qual. 24, 643–683 (2014). https://doi.org/10.1108/MSQ-09-2013-0187
Klein, S., Totz, C.: Prosumers as service configurators-vision, status and future requirements1. E-Life After the Dot Com Bust. 119 (2004)
Camilleri, J., Neuhofer, B.: Value co-creation and co-destruction in the Airbnb sharing economy. IJCHM. 29, 2322–2340 (2017). https://doi.org/10.1108/IJCHM-09-2016-0492
Tiwana, A.: Platform Ecosystems: Aligning Architecture, Governance, and Strategy. Morgan Kaufmann, Amsterdam (2013)
Ross, J.W., Beath, C.M., Mocker, M.: Designed for Digital: How to Architect Your Business for Sustained Success. MIT Press, New York (2019)
Lagerström, R., Johnson, P., Ekstedt, M.: Architecture analysis of enterprise systems modifiability: a metamodel for software change cost estimation. Software Qual J. 18, 437–468 (2010). https://doi.org/10.1007/s11219-010-9100-0
Bones, C., Hammersley, J., Shaw, N.: Optimizing Digital Strategy. Kogan Page (2019)
Weill, P., Ross, J.W.: IT Governance: How Top Performers Manage IT Decision Rights for Superior Results. Harvard Business School Press, Boston (2004)
Rogers, D.L.: The Digital Transformation Playbook: Rethink Your Business for the Digital Age. Columbia University Press, New York (2016). https://doi.org/10.7312/roge17544
Řepa, V., Svatoš, O.: Adaptive and resilient business architecture for the digital age. In: Zimmermann, A., Schmidt, R., Jain, L.C. (eds.) Architecting the Digital Transformation. ISRL, vol. 188, pp. 199–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49640-1_11
Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5, 4–7 (2001). https://doi.org/10.1007/s007790170019
Bazire, M., Brézillon, P.: Understanding context before using it. In: Dey, A., Kokinov, B., Leake, D., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol. 3554, pp. 29–40. Springer, Heidelberg (2005). https://doi.org/10.1007/11508373_3
Sandkuhl, K., Borchardt, U.: How to identify the relevant elements of “context” in context-aware information systems? In: Johansson, B., Andersson, B., Holmberg, N. (eds.) BIR 2014. LNBIP, vol. 194, pp. 290–305. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11370-8_21
Gergely, T., Ury, L.: Mathematical foundation of cognitive computing based artificial intelligence. In: Osipov, G.S., Panov, A.I., Yakovlev, K.S. (eds.) Artificial Intelligence. LNCS (LNAI), vol. 11866, pp. 29–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33274-7_3
Valiant, L.G.: Cognitive computation. In: Proceedings of IEEE 36th Annual Foundations of Computer Science, pp. 2–3. IEEE Computer Society Press. Milwaukee (1995). https://doi.org/10.1109/SFCS.1995.492456
Cognitive Catalysts. IBM Institute for Business Value (2017)
van den Hoven, J.: Data architecture: principles for data. Inf. Syst. Manage. 20, 93–96 (2003). https://doi.org/10.1201/1078/43205.20.3.20030601/43078.11
El-Sheikh, E., Zimmermann, A., Jain, L.C. (eds.): Emerging Trends in the Evolution of Service-Oriented and Enterprise Architectures. ISRL, vol. 111. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40564-3
Donaldson, S.E., Siegel, S.G., Williams, C.K., Aslam, A.: Enterprise cybersecurity architecture. In: Enterprise Cybersecurity Study Guide, pp. 95–133. Apress, Berkeley (2018). https://doi.org/10.1007/978-1-4842-3258-3_3
Bradley, R.V., Byrd, T.A.: Information technology architecture as a competitive advantage-yielding resource: a theoretical perspective. IJNVO 4, 1 (2007). https://doi.org/10.1504/IJNVO.2007.012079
Goodyear, M., et al.: Enterprise System Architectures: Building Client/Server and Web-based Systems. CRC Press (2017). https://doi.org/10.1201/9780203757239
Martin, P.: Kubernetes resources. In: Kubernetes, pp. 19–22. Apress, Berkeley (2021). https://doi.org/10.1007/978-1-4842-6494-2_4
Vohra, D.: Docker Management Design Patterns. Apress, Berkeley (2017). https://doi.org/10.1007/978-1-4842-2973-6
Masuda, Y., Shirasaka, S., Yamamoto, S., Hardjono, T.: An adaptive enterprise architecture framework and implementation: towards global enterprises in the era of cloud/mobile IT/digital IT. Int. J. Enterp. Inf. Syst. (IJEIS) 13, 1–22 (2017)
Masuda, Y., Shirasaka, S., Yamamoto, S., Hardjono, T.: Architecture board practices in adaptive enterprise architecture with digital platform: a case of global healthcare enterprise. Int. J. Enterp. Inf. Syst. (IJEIS) 14, 1–20 (2018)
Masuda, Y., Viswanathan, M.: Enterprise Architecture for Global Companies in a Digital IT Era: Adaptive Integrated Digital Architecture Framework (AIDAF). Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1083-6
Wang, Y., Towara, T., Anderl, R.: Topological approach for mapping technologies in reference architectural model Industrie 4.0 (RAMI 4.0). In: Proceedings of the World Congress on Engineering and Computer Science, pp. 25–27 (2017)
Masuda, Y., Shepard, D.S., Yamamoto, S., Toma, T.: Clinical decision-support system with electronic health record: digitization of research in pharma. In: Chen, Y.-W., Zimmermann, A., Howlett, R.J., Jain, L.C. (eds.) Innovation in Medicine and Healthcare Systems, and Multimedia. SIST, vol. 145, pp. 47–57. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-8566-7_5
Ross, J.W., Sebastian, I., Beath, C., Mocker, M., Moloney, K., Fonstad, N.: Designing and executing digital strategies. In: ICIS 2016 Proceedings, vol. 17 (2016)
Ross, J.W., Weill, P., Robertson, D.: Enterprise Architecture as Strategy: Creating a Foundation for Business Execution. Harvard Business School Press, Boston (2006)
Gadepally, V., et al.: AI Enabling Technologies: A Survey. arXiv:1905.03592 [cs] (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zimmermann, A., Schmidt, R., Sandkuhl, K., Masuda, Y., Chehri, A. (2021). Architecting Intelligent Service Ecosystems: Perspectives, Frameworks, and Practices. In: Buchmann, R.A., Polini, A., Johansson, B., Karagiannis, D. (eds) Perspectives in Business Informatics Research. BIR 2021. Lecture Notes in Business Information Processing, vol 430. Springer, Cham. https://doi.org/10.1007/978-3-030-87205-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-87205-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87204-5
Online ISBN: 978-3-030-87205-2
eBook Packages: Computer ScienceComputer Science (R0)