[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Joint Segmentation and Quantification of Main Coronary Vessels Using Dual-Branch Multi-scale Attention Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Joint segmentation and quantification of main coronary vessels are important to the diagnosis and intraoperative treatment of coronary artery disease. They can help clinicians decide whether to carry out coronary revascularization and choose the interventional stent. However, joint segmentation and quantification in a framework is still challenging because of intrinsic distinction of optimization objects for these two tasks. In this paper, we propose a dual-branch multi-scale attention network (DMAN) to achieve synergistic optimization process in a framework. Our DMAN consists of a nested residual module and a attentive regression module. The nested residual module is used to extract and aggregate multi-level and multi-scale features. The attentive regression module introduces a two-phase attention block to express interactive correlation of separated regions and capture the informativeness of the important region in the image. Our DMAN is evaluated over 1893 X-ray coronary angiography images collected from 529 subjects. DMAN achieves the dice coefficient of 0.916 for segmentation and the MAE of 1.30 ± 0.62 mm for quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sianos, G., et al.: The SYNTAX score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention 1(2), 219–227 (2005)

    Google Scholar 

  2. Halon, D.A., Sapoznikov, D., Lewis, B.S., Gotsman, M.S.: Localization of lesions in the coronary circulation. Am. J. Cardiol. 52(8), 921–926 (1983)

    Article  Google Scholar 

  3. Vogel, R.A.: Assessing stenosis significance by coronary arteriography: are the best variables good enough? J. Am. Coll. Cardiol. 12(3), 692–693 (1988)

    Article  Google Scholar 

  4. Fioranelli, M., Gonnella, C., Tonioni, S., D’Errico, F., Carbone, M.: Clinical anatomy of the coronary circulation. In: Imaging Coronary Arteries, pp. 1–11 (2013)

    Google Scholar 

  5. Rittger, H., Schertel, B., Schmidt, M., Justiz, J., Brachmann, J., Sinha, A.M.: Three-dimensional reconstruction allows accurate quantification and length measurements of coronary artery stenoses. EuroIntervention 5(1), 127–132 (2009)

    Article  Google Scholar 

  6. Tomasello, S. D., Costanzo, L., Galassi, A. R.: Quantitative coronary angiography in the interventional cardiology. In: Advances in the Diagnosis of Coronary Atherosclerosis (2011)

    Google Scholar 

  7. Garrone, P., et al.: Quantitative coronary angiography in the current era: principles and applications. J. Intervent. Cardiol 22(6), 527–536 (2009)

    Article  Google Scholar 

  8. Jun, T.J., Kweon, J., Kim, Y.H., Kim, D.: T-net: nested encoder-decoder architecture for the main vessel segmentation in coronary angiography. Neural Netw. 128, 216–233 (2020)

    Article  Google Scholar 

  9. Qin, B., et al.: Accurate vessel extraction via tensor completion of background layer in X-ray coronary angiograms. Pattern Recogn. 87, 38–54 (2019)

    Article  Google Scholar 

  10. Cervantes-Sanchez, F., Cruz-Aceves, I., Hernandez-Aguirre, A., Hernandez-Gonzalez, M.A., Solorio-Meza, S.E.: Automatic segmentation of coronary arteries in X-ray angiograms using multiscale analysis and artificial neural networks. Appl. Sci. 9(24), 5507 (2019)

    Article  Google Scholar 

  11. Hao, D., et al.: Sequential vessel segmentation via deep channel attention network. Neural Netw. 128, 172–187 (2020)

    Article  Google Scholar 

  12. Cong, W., Yang, J., Ai, D., Chen, Y., Liu, Y., Wang, Y.: Quantitative analysis of deformable model-based 3-D reconstruction of coronary artery from multiple angiograms. IEEE Trans. Biomed. Eng. 62(8), 2079–2090 (2015)

    Article  Google Scholar 

  13. Janssen, J.P., Rares, A., Tuinenburg, J.C., Koning, G., Lansky, A.J., Reiber, J.H.: New approaches for the assessment of vessel sizes in quantitative vascular X-ray analysis. Int. J. Cardiovasc. Imaging 26(3), 259–271 (2010)

    Article  Google Scholar 

  14. Wan, T., Feng, H., Tong, C., Li, D., Qin, Z.: Automated identification and grading of coronary artery stenoses with X-ray angiography. Comput. Methods Prog. Biomed. 167, 13–22 (2018)

    Article  Google Scholar 

  15. Zhang, D., Yang, G., Zhao, S., Zhang, Y., Zhang, H., Li, S.: Direct quantification for coronary artery stenosis using multiview learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 449–457 (2019)

    Google Scholar 

  16. Zhang, D., et al.: Direct quantification for coronary artery stenosis using multiview learning. IEEE Trans. Med. Imaging 39(12), 4322–4334 (2020)

    Article  Google Scholar 

  17. Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O.R., Jagersand, M.: U2-Net: going deeper with nested U-structure for salient object detection. Pattern Recogn. 106, 107404 (2020)

    Article  Google Scholar 

  18. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019)

    Google Scholar 

  19. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016)

    Google Scholar 

  20. Baxter, J.: A model of inductive bias learning. J. Artif. Intell. Res. 12, 149–198 (2000)

    Article  MathSciNet  Google Scholar 

  21. Maurer, A., Pontil, M., Romera-Paredes, B.: The benefit of multitask representation learning. J. Mach. Learn. Res. 17(81), 1–32 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Yang, S., Kweon, J., Kim, Y. H.: Major vessel segmentation on x-ray coronary angiography using deep networks with a novel penalty loss function. In: International Conference on Medical Imaging with Deep Learning (2019)

    Google Scholar 

  23. Yang, S., et al.: Deep learning segmentation of major vessels in X-ray coronary angiography. Sci. Rep. 9(1), 1–11 (2019)

    Google Scholar 

  24. Zhu, X., Cheng, Z., Wang, S., Chen, X., Lu, G.: Coronary angiography image segmentation based on PSPNet. Comput. Methods Prog. Biomed. 200, 105897 (2020)

    Article  Google Scholar 

  25. Xian, Z., Wang, X., Yan, S., Yang, D., Chen, J., Peng, C.: Main coronary vessel segmentation using deep learning in smart medical. Math. Prob. Eng. 2020, 1–9 (2020)

    Google Scholar 

  26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  27. Zhen, X., Wang, Z., Islam, A., Bhaduri, M., Chan, I., Li, S.: Direct estimation of cardiac bi-ventricular volumes with regression forests. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 586–593 (2014)

    Google Scholar 

  28. Xue, W., Islam, A., Bhaduri, M., Li, S.: Direct multitype cardiac indices estimation via joint representation and regression learning. IEEE Trans. Med. Imaging 36(10), 2057–2067 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant U1908211 and Key Program for International Cooperation Projects of Guangdong Province under Grant 2018A050506031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Zhang, D., Gao, Z., Zhang, H. (2021). Joint Segmentation and Quantification of Main Coronary Vessels Using Dual-Branch Multi-scale Attention Network. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics