[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

kCBAC-Net: Deeply Supervised Complete Bipartite Networks with Asymmetric Convolutions for Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12901))

  • 13k Accesses

Abstract

Accurate and automatic medical image segmentation is challenging due to significant size and shape variations of objects (e.g., in multi-scales) and missing/blurring object borders. In this paper, we propose a new deeply supervised k-complete-bipartite network with asymmetric convolutions (kCBAC-Net) to exploit multi-scale features and improve the capability of standard convolutions for segmentation. (1) We leverage a generalized complete bipartite network to reuse multi-scale features, consolidate feature hierarchies at different scales, and preserve maximum information flow between encoder and decoder layers. (2) To further capture multi-scale information, we sequentially connect k complete bipartite network modules together to facilitate their processing in different image scales. (3) We replace the standard convolution by asymmetric convolution block to strengthen the central skeleton parts of standard convolution, enhancing the model’s robustness on exploiting more discriminative features. (4) We employ auxiliary deep supervisions to boost information flow in the network and extract highly discriminative features. We evaluate our kCBAC-Net on three datasets (ultrasound lymph node segmentation (2D), 2017 ISIC Skin Lesion segmentation (2D), and MM-WHS CT (3D)), achieving state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ando, T., Hotta, K.: Cell image segmentation by feature random enhancement module. In: VISIGRAPP, pp. 520–527 (2021)

    Google Scholar 

  2. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  3. Celebi, M.E., et al.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)

    Article  Google Scholar 

  4. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)

    Article  Google Scholar 

  5. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: CVPR, pp. 2487–2496 (2016)

    Google Scholar 

  6. Chen, J., Banerjee, S., Grama, A., Scheirer, W.J., Chen, D.Z.: Neuron segmentation using deep complete bipartite networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 21–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_3

    Chapter  Google Scholar 

  7. Chen, J., Yang, L., Zhang, Y., Alber, M., Chen, D.Z.: Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation. In: NIPS, pp. 3036–3044 (2016)

    Google Scholar 

  8. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  9. Chen, L.C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: scale-aware semantic image segmentation. In: CVPR, pp. 3640–3649 (2016)

    Google Scholar 

  10. Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: IEEE, ISBI, pp. 168–172 (2018)

    Google Scholar 

  11. Ding, X., Guo, Y., Ding, G., Han, J.: ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks. In: ICCV, pp. 1911–1920 (2019)

    Google Scholar 

  12. Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.A.: Unsupervised cross-modality domain adaptation of ConvNets for biomedical image segmentations with adversarial loss. In: IJCAI, pp. 691–697 (2018)

    Google Scholar 

  13. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: AISTATS, pp. 562–570 (2015)

    Google Scholar 

  14. Lei, B., et al.: Skin lesion segmentation via generative adversarial networks with dual discriminators. Med. Image Anal. 64, 101716 (2020)

    Article  Google Scholar 

  15. Li, H., et al.: Dense deconvolutional network for skin lesion segmentation. IEEE J. Biomed. Health Inform. 23(2), 527–537 (2019)

    Article  Google Scholar 

  16. Liang, P., Chen, J., Zheng, H., Yang, L., Zhang, Y., Chen, D.Z.: Cascade decoder: a universal decoding method for biomedical image segmentation. In: IEEE, ISBI, pp. 339–342 (2019)

    Google Scholar 

  17. Mirikharaji, Z., Hamarneh, G.: Star shape prior in fully convolutional networks for skin lesion segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 737–745. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_84

    Chapter  Google Scholar 

  18. Pace, D.F., Dalca, A.V., Geva, T., Powell, A.J., Moghari, M.H., Golland, P.: Interactive whole-heart segmentation in congenital heart disease. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 80–88. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_10

    Chapter  Google Scholar 

  19. Payer, C., Štern, D., Bischof, H., Urschler, M.: Multi-label whole heart segmentation using CNNs and anatomical label configurations. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 190–198. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_20

    Chapter  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Sun, C., Paluri, M., Collobert, R., Nevatia, R., Bourdev, L.: ProNet: learning to propose object-specific boxes for cascaded neural networks. In: CVPR, pp. 3485–3493 (2016)

    Google Scholar 

  22. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)

    Google Scholar 

  23. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3394–3364 (2020)

    Google Scholar 

  24. Wang, Y., Ni, Z., Song, S., Yang, L., Huang, G.: Revisiting locally supervised learning: an alternative to end-to-end training. In: ICLR (2021)

    Google Scholar 

  25. Xie, Y., Zhang, J., Lu, H., Shen, C., Xia, Y.: SESV: accurate medical image segmentation by predicting and correcting errors. IEEE Trans. Med. Imaging 40(1), 286–296 (2021)

    Article  Google Scholar 

  26. Yuan, Y., Lo, Y.C.: Improving dermoscopic image segmentation with enhanced convolutional-deconvolutional networks. IEEE J. Biomed. Health Inform. 23(2), 519–526 (2019)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Y., Ying, M.T.C., Chen, D.Z.: Decompose-and-integrate learning for multi-class segmentation in medical images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 641–650. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_71

    Chapter  Google Scholar 

  28. Zhang, Y., Ying, M.T., Yang, L., Ahuja, A.T., Chen, D.Z.: Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images. In: IEEE, BIBM, pp. 443–448 (2016)

    Google Scholar 

  29. Zheng, H., et al.: HFA-Net: 3D cardiovascular image segmentation with asymmetrical pooling and content-aware fusion. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 759–767. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_84

    Chapter  Google Scholar 

  30. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  31. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported in part by NSF grants IIS-1455886, CCF-1617735, CNS-1629914, and IIS-1955395.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, P., Zheng, H., Zhang, Y., Wang, C., Chen, D.Z. (2021). kCBAC-Net: Deeply Supervised Complete Bipartite Networks with Asymmetric Convolutions for Medical Image Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics