Abstract
Accurate and automatic medical image segmentation is challenging due to significant size and shape variations of objects (e.g., in multi-scales) and missing/blurring object borders. In this paper, we propose a new deeply supervised k-complete-bipartite network with asymmetric convolutions (kCBAC-Net) to exploit multi-scale features and improve the capability of standard convolutions for segmentation. (1) We leverage a generalized complete bipartite network to reuse multi-scale features, consolidate feature hierarchies at different scales, and preserve maximum information flow between encoder and decoder layers. (2) To further capture multi-scale information, we sequentially connect k complete bipartite network modules together to facilitate their processing in different image scales. (3) We replace the standard convolution by asymmetric convolution block to strengthen the central skeleton parts of standard convolution, enhancing the model’s robustness on exploiting more discriminative features. (4) We employ auxiliary deep supervisions to boost information flow in the network and extract highly discriminative features. We evaluate our kCBAC-Net on three datasets (ultrasound lymph node segmentation (2D), 2017 ISIC Skin Lesion segmentation (2D), and MM-WHS CT (3D)), achieving state-of-the-art performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ando, T., Hotta, K.: Cell image segmentation by feature random enhancement module. In: VISIGRAPP, pp. 520–527 (2021)
Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)
Celebi, M.E., et al.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)
Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)
Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: CVPR, pp. 2487–2496 (2016)
Chen, J., Banerjee, S., Grama, A., Scheirer, W.J., Chen, D.Z.: Neuron segmentation using deep complete bipartite networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 21–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_3
Chen, J., Yang, L., Zhang, Y., Alber, M., Chen, D.Z.: Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation. In: NIPS, pp. 3036–3044 (2016)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Chen, L.C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: scale-aware semantic image segmentation. In: CVPR, pp. 3640–3649 (2016)
Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: IEEE, ISBI, pp. 168–172 (2018)
Ding, X., Guo, Y., Ding, G., Han, J.: ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks. In: ICCV, pp. 1911–1920 (2019)
Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.A.: Unsupervised cross-modality domain adaptation of ConvNets for biomedical image segmentations with adversarial loss. In: IJCAI, pp. 691–697 (2018)
Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: AISTATS, pp. 562–570 (2015)
Lei, B., et al.: Skin lesion segmentation via generative adversarial networks with dual discriminators. Med. Image Anal. 64, 101716 (2020)
Li, H., et al.: Dense deconvolutional network for skin lesion segmentation. IEEE J. Biomed. Health Inform. 23(2), 527–537 (2019)
Liang, P., Chen, J., Zheng, H., Yang, L., Zhang, Y., Chen, D.Z.: Cascade decoder: a universal decoding method for biomedical image segmentation. In: IEEE, ISBI, pp. 339–342 (2019)
Mirikharaji, Z., Hamarneh, G.: Star shape prior in fully convolutional networks for skin lesion segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 737–745. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_84
Pace, D.F., Dalca, A.V., Geva, T., Powell, A.J., Moghari, M.H., Golland, P.: Interactive whole-heart segmentation in congenital heart disease. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 80–88. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_10
Payer, C., Štern, D., Bischof, H., Urschler, M.: Multi-label whole heart segmentation using CNNs and anatomical label configurations. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 190–198. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_20
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sun, C., Paluri, M., Collobert, R., Nevatia, R., Bourdev, L.: ProNet: learning to propose object-specific boxes for cascaded neural networks. In: CVPR, pp. 3485–3493 (2016)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)
Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3394–3364 (2020)
Wang, Y., Ni, Z., Song, S., Yang, L., Huang, G.: Revisiting locally supervised learning: an alternative to end-to-end training. In: ICLR (2021)
Xie, Y., Zhang, J., Lu, H., Shen, C., Xia, Y.: SESV: accurate medical image segmentation by predicting and correcting errors. IEEE Trans. Med. Imaging 40(1), 286–296 (2021)
Yuan, Y., Lo, Y.C.: Improving dermoscopic image segmentation with enhanced convolutional-deconvolutional networks. IEEE J. Biomed. Health Inform. 23(2), 519–526 (2019)
Zhang, Y., Ying, M.T.C., Chen, D.Z.: Decompose-and-integrate learning for multi-class segmentation in medical images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 641–650. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_71
Zhang, Y., Ying, M.T., Yang, L., Ahuja, A.T., Chen, D.Z.: Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images. In: IEEE, BIBM, pp. 443–448 (2016)
Zheng, H., et al.: HFA-Net: 3D cardiovascular image segmentation with asymmetrical pooling and content-aware fusion. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 759–767. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_84
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)
Acknowledgement
This research was supported in part by NSF grants IIS-1455886, CCF-1617735, CNS-1629914, and IIS-1955395.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Gu, P., Zheng, H., Zhang, Y., Wang, C., Chen, D.Z. (2021). kCBAC-Net: Deeply Supervised Complete Bipartite Networks with Asymmetric Convolutions for Medical Image Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-87193-2_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87192-5
Online ISBN: 978-3-030-87193-2
eBook Packages: Computer ScienceComputer Science (R0)