Abstract
Fetal brain segmentation from Magnetic Resonance (MR) images is a fundamental step in brain development study and early diagnosis. Although progress has been made, performance still needs to be improved especially for the images with motion artifacts (due to unpredictable fetal movement) and/or changes of magnetic field. In this paper, we propose a novel confidence-aware cascaded framework to accurately extract fetal brain from MR image. Different from the existing coarse-to-fine techniques, our two-stage strategy aims to segment brain region and simultaneously produce segmentation confidence for each slice in 3D MR image. Then, the image slices with high-confidence scores are leveraged to guide brain segmentation of low-confidence image slices, especially on the brain regions with blurred boundaries. Furthermore, a slice consistency loss is also proposed to enhance the relationship among the segmentations of adjacent slices. Experimental results on fetal brain MRI dataset show that our proposed model achieves superior performance, and outperforms several state-of-the-art methods.
X. Zhang, Z. Cui and C. Chen—Contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 885–896 (1999)
Makropoulos, A., Counsell, S.J., Rueckert, D.: A review on automatic fetal and neonatal brain MRI segmentation. NeuroImage 170, 231–248 (2018)
Anquez, J., Angelini, E.D., Bloch, I.: Automatic segmentation of head structures on fetal MRI. In: IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro, pp. 109–112 (2009)
Tourbier, S., et al.: Automatic brain extraction in fetal MRI using multi-atlas-based segmentation, SPIE, vol. 9413, pp. 94130Y–94130Y-7 (2015)
Wright, R., et al.: Automatic quantification of normal cortical folding patterns from fetal brain MRI. Neuroimage 91(2), 21–32 (2014)
Ching, T., et al.: Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15, 20170387 (2018)
Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19(1), 221–248 (2017)
Salehi, S.S.M., et al.: Real-time automatic fetal brain extraction in fetal MRI by deep learning. In: 15th IEEE International Symposium on Biomedical Imaging, ISBI 2018, Washington, DC, USA, 4–7 April 2018, pp. 720–724 (2018)
Lou, J., et al.: Automatic fetal brain extraction using multi-stage U-Net with deep supervision. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 592–600. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_68
Ebner, M., et al.: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage 206, 116324 (2020)
Xing, J., et al.: Lesion segmentation in ultrasound using semi-pixel-wise cycle generative adversarial nets. IEEE/ACM Trans. Comput. Biol. Bioinform. (2020)
Li, J., et al.: Automatic fetal brain extraction from 2D in utero fetal MRI slices using deep neural network. Neurocomputing 378, 335–349 (2020)
Chen, J., et al.: Automatic brain extraction from 3D fetal MR image with deep learning-based multi-step framework. Comput. Med. Imaging Graph. 88, 101848 (2021)
Sled, J.G., Pike, G.B.: Understanding intensity non-uniformity in MRI. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 614–622. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056247
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Pan, F., Shin, I., Rameau, F., Lee, S., Kweon, I.S.: Unsupervised intra-domain adaptation for semantic segmentation through self-supervision. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 3763–3772. IEEE (2020)
Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)
Huang, H., et al.: UNet 3+: a full-scale connected UNet for medical image segmentation. In: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2020, Barcelona, Spain, 4–8 May 2020, pp. 1055–1059 (2020)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, X. et al. (2021). Confidence-Aware Cascaded Network for Fetal Brain Segmentation on MR Images. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_55
Download citation
DOI: https://doi.org/10.1007/978-3-030-87199-4_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87198-7
Online ISBN: 978-3-030-87199-4
eBook Packages: Computer ScienceComputer Science (R0)