Abstract
Internet Service Providers technical support needs personal data to predict potential anomalies. In this paper, we performed a comparative study of forecasting performance using raw data and anonymized data, in order to assess how much performance may vary, when plain personal data are replaced by anonymized personal data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
https://mikrotik.com/thedude, [Online; accessed 02-May-2021].
References
Cambium Networks. https://www.cambiumnetworks.com/products/software/cnmaestro-management/. Accessed 02 May 2021
Aamot, H., Kohl, C.D., Richter, D., Knaup-Gregori, P.: Pseudonymization of patient identifiers for translational research. BMC Med. Inform. Decis. Mak. 13(1), 1–15 (2013). https://doi.org/10.1186/1472-6947-13-75
Aggarwal, C.C.: On k-anonymity and the curse of dimensionality. VLDB 5, 901–909 (2005)
Article 29 Data Protection Working Party: Opinion 05/2014 on Anonymisation Techniques. Working Party Opinions (April), 1–37 (2014). http://ec.europa.eu/justice/data-protection/index_en.htm%0Aec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
Ghinita, G., Karras, P., Kalnis, P., Mamoulis, N.: Fast data anonymization with low information loss. In: 33rd International Conference on Very Large Data Bases, VLDB 2007 - Conference Proceedings, pp. 758–769 (2007)
Goldsteen, A., Ezov, G., Shmelkin, R., Moffie, M., Farkash, A.: Anonymizing machine learning models. arXiv (2020)
González-Serrano, F.-J., Amor-Martín, A., Casamayón-Antón, J.: Supervised machine learning using encrypted training data. Int. J. Inf. Secur. 17(4), 365–377 (2017). https://doi.org/10.1007/s10207-017-0381-1
Hesamifard, E., Takabi, H., Ghasemi, M., Wright, R.N.: Privacy-preserving machine learning as a service. In: Proceedings on Privacy Enhancing Technologies, vol. 2018, no. 3, pp. 123–142 (2018)
Murthy, S., Abu Bakar, A., Abdul Rahim, F., Ramli, R.: A Comparative study of data anonymization techniques. In: Proceedings - 5th IEEE International Conference on Big Data Security on Cloud, BigDataSecurity 2019, 5th IEEE International Conference on High Performance and Smart Computing, HPSC 2019 and 4th IEEE International Conference on Intelligent Data and Security, IDS 2019, pp. 306–309 (2019). https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00063
Park, H., Kim, P., Kim, H., Park, K.W., Lee, Y.: Efficient machine learning over encrypted data with non-interactive communication. Comput. Stan. Interf. 58, 87–108 (2018)
Rifaut, A.: Office of inspector general, health care compliance association: guidance note: guidance on anonymisation and pseudonymisation. In: 2011 4th International Workshop on Requirements Engineering and Law, RELAW 2011, Proceedings - Held in Conjunction with the 19th International Requirements Engineering Conference (June), pp. 1–54 (2019). https://oig.hhs.gov/compliance/101/files/HCCA-OIG-Resource-Guide.pdf
Singapore, P.D.P.C.: Guide to basic data anonymisation techniques. In: Published 25 January 2018. Personal Data Protection Commission Singapore (PDPC) (January), pp. 1–39 (2018). https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Other-Guides/Guide-to-Anonymisation_v1-(250118).pdf
Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(5), 557–570 (2002). https://doi.org/10.1142/S0218488502001648
Zhong, S., Yang, Z., Wright, R.N.: Anonymization of customer data, vol. 1, pp. 139–147 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Campanile, L., Forgione, F., Marulli, F., Palmiero, G., Sanghez, C. (2021). Dataset Anonimyzation for Machine Learning: An ISP Case Study. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-86960-1_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86959-5
Online ISBN: 978-3-030-86960-1
eBook Packages: Computer ScienceComputer Science (R0)