[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Inference Engines Performance in Reasoning Tasks for Intelligent Tutoring Systems

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

The use of formal knowledge representation models in intelligent tutoring systems often requires logical reasoning on these models by predefined rules. This process can be time and memory consuming, so finding effective software reasoners for different applications is an important research field. This problem is relevant for cognitive and constraint-based intelligent tutoring systems. We performed a comparative study of various software reasoners (Pellet, Apache Jena inference subsystem, Apache Jena SPARQL query processor, SWI-Prolog with semweb package, Closed World Machine, and Answer Set Programming solvers Clingo and DLV) for solving tasks specific to intelligent tutoring systems using three formal models with different properties and corresponding rule sets created for intelligent tutoring systems in introductory programming education domain. We compared features of rule-definition formalisms for different approaches and measured run and wall time, average CPU load, and peak RAM usage based on the count of inferred RDF triples. The experiments show that Apache Jena infers the solution quicker than other reasoners on the majority of tasks but consumes a significant amount of memory, while Clingo performs significantly better for combinatorial problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ARQ - A SPARQL Processor for Jena. https://jena.apache.org/documentation//query/. Accessed 30 Apr 2021

  2. DLV System. http://www.dlvsystem.com/dlv/. Accessed 30 Apr 2021

  3. Jena - a free and open source Java framework for building Semantic Web and Linked Data applications. https://jena.apache.org. Accessed 30 Apr 2021

  4. library(semweb/rdf11): The RDF database. https://www.swi-prolog.org/pldoc/man?section=semweb-rdf11. Accessed 30 Apr 2021

  5. SPARQL Update. A language for updating RDF graphs. W3C Member Submission 15 July 2008. https://www.w3.org/Submission/SPARQL-Update/. Accessed 30 Apr 2021

  6. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission 21 May 2004. https://www.w3.org/Submission/SWRL/. Accessed 30 Apr 2021

  7. Adrian, W.T., et al.: The ASP System DLV: Advancements and Applications. KI - Künstliche Intelligenz, pp. 177–179 (2018). https://doi.org/10.1007/s13218-018-0533-0

  8. Berners-Lee, T.: Cwm: General-purpose data processor for the semantic web. http://www.w3.org/2000/10/swap/doc/cwm (2000). Accessed 30 Apr 2021

  9. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 93–103 (2011). https://doi.org/10.1145/2043174.2043195

  10. Calegari, R., Ciatto, G., Mascardi, V., Omicini, A.: Logic-based technologies for multi-agent systems: a systematic literature review. Autonomous Agents Multi-Agent Syst. 35(1), 1–67 (2020). https://doi.org/10.1007/s10458-020-09478-3

  11. Chang, M., D’Aniello, G., Gaeta, M., Orciuoli, F., Sampson, D., Simonelli, C.: Building ontology-driven tutoring models for intelligent tutoring systems using data mining. IEEE Access 8, 48151–48162 (2020). https://doi.org/10.1109/access.2020.2979281

  12. Cortés-Calabuig, A., Denecker, M., Arieli, O., Van Nuffelen, B., Bruynooghe, M.: On the local closed-world assumption of data-sources. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 145–157. Springer, Heidelberg (2005). https://doi.org/10.1007/11546207_12

    Chapter  Google Scholar 

  13. Demaidi, M.N., Gaber, M.M., Filer, N.: OntoPeFeGe: ontology-based personalized feedback generator. IEEE Access 6, 31644–31664 (2018)

    Google Scholar 

  14. Dermeval, D., Albuquerque, J., Bittencourt, I.I., Isotani, S., Silva, A.P., Vassileva, J.: GaTO: An ontological model to apply gamification in intelligent tutoring systems. Frontiers Artif. Intell. 2, July 2019. https://doi.org/10.3389/frai.2019.00013. https://doi.org/10.3389/frai.2019.00013

  15. Dougalis, A., Plexousakis, D.: AFFLOG: A Logic Based Affective Tutoring System. In: Kumar, V., Troussas, C. (eds.) ITS 2020. LNCS, vol. 12149, pp. 270–274. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49663-0_31

    Chapter  Google Scholar 

  16. Franzoni, V., Biondi, G., Milani, A.: Emotional sounds of crowds: spectrogram-based analysis using deep learning. Multimed. Tools Appl. 79(47–48), 36063–36075 (2020)

    Google Scholar 

  17. Franzoni, V., Milani, A., Mengoni, P., Piccinato, F.: Artificial intelligence visual metaphors in e-learning interfaces for learning analytics. Appl. Sci. 10(20), 7195 (2020)

    Google Scholar 

  18. Franzoni, V., Pallottelli, S., Milani, A.: Reshaping higher education with e-studium, a 10-years capstone in academic computing. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12250, pp. 293–303. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58802-1_22

    Chapter  Google Scholar 

  19. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72200-7_23

    Chapter  Google Scholar 

  20. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. CoRR abs/1705.09811 (2017)

    Google Scholar 

  21. Janhunen, T.: Cross-Translating Answer Set Programs Using the ASPTOOLS Collection. KI - Künstliche Intelligenz 32(2-3), 183–184 (2018). https://doi.org/10.1007/s13218-018-0529-9

  22. Kultsova, M., Anikin, A., Zhukova, I., Dvoryankin, A.: Ontology-based learning content management system in programming languages domain. Commun. Comput. Inf. Sci. 535, 767–777 (2015). https://doi.org/10.1007/978-3-319-23766-4_61

  23. Lamy, J.B.: Owlready: ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies. Artif. Intell. Med. 80 (2017). https://doi.org/10.1016/j.artmed.2017.07.002

  24. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench. In: Proceedings of the 18th International Conference on World Wide Web - WWW 2009. ACM Press (2009). https://doi.org/10.1145/1526709.1526790

  25. Rattanasawad, T., Buranarach, M., Saikaew, K.R., Supnithi, T.: A comparative study of rule-based inference engines for the semantic web. IEICE Trans. Inf. Syst. E101.D(1), 82–89 (2018). https://doi.org/10.1587/transinf.2017swp0004. https://doi.org/10.1587/transinf.2017swp0004

  26. Singh, G., Bhatia, S., Mutharaju, R.: OWL2Bench: a benchmark for OWL 2 reasoners. In: Pan, J.Z., Tamma, V., d’Amato, C., Janowicz, K., Fu, B., Polleres, A., Seneviratne, O., Kagal, L. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 81–96. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_6

    Chapter  Google Scholar 

  27. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semantics 5(2), 51–53 (2007). https://doi.org/10.1016/j.websem.2007.03.004. https://www.sciencedirect.com/science/article/pii/S1570826807000169, software Engineering and the Semantic Web

  28. Sychev, O., Denisov, M., Anikin, A.: Verifying algorithm traces and fault reason determining using ontology reasoning. In: 19th International Semantic Web Conference on Demos and Industry Tracks: From Novel Ideas to Industrial Practice, ISWC-Posters 2020, vol. 2721, pp. 49–53 (2020). http://ceur-ws.org/Vol-2721/paper495.pdf

  29. Sychev, O., Penskoy, N.: Ontology-based determining of evaluation order of c expressions and the fault reason for incorrect answers. In: 19th International Semantic Web Conference on Demos and Industry Tracks: From Novel Ideas to Industrial Practice, ISWC-Posters 2020, vol. 2721, pp. 44–48 (2020). http://ceur-ws.org/Vol-2721/paper494.pdf

  30. Sychev, O., Denisov, M., Terekhov, G.: How it works: Algorithms - a tool for developing an understanding of control structures. In: Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science Education V. 2. ACM, June 2021. https://doi.org/10.1145/3456565.3460032

  31. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: Swi-prolog. Theory and Practice of Logic Programming 12(1–2), 67–96 (2012). https://doi.org/10.1017/S1471068411000494

Download references

Acknowledgment

The reported study was funded by RFBR, project number 20-07-00764 “Conceptual modeling of the knowledge domain on the comprehension level for intelligent decision-making systems in the learning”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Anikin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sychev, O.A., Anikin, A., Denisov, M. (2021). Inference Engines Performance in Reasoning Tasks for Intelligent Tutoring Systems. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86960-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86959-5

  • Online ISBN: 978-3-030-86960-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics