Abstract
The use of formal knowledge representation models in intelligent tutoring systems often requires logical reasoning on these models by predefined rules. This process can be time and memory consuming, so finding effective software reasoners for different applications is an important research field. This problem is relevant for cognitive and constraint-based intelligent tutoring systems. We performed a comparative study of various software reasoners (Pellet, Apache Jena inference subsystem, Apache Jena SPARQL query processor, SWI-Prolog with semweb package, Closed World Machine, and Answer Set Programming solvers Clingo and DLV) for solving tasks specific to intelligent tutoring systems using three formal models with different properties and corresponding rule sets created for intelligent tutoring systems in introductory programming education domain. We compared features of rule-definition formalisms for different approaches and measured run and wall time, average CPU load, and peak RAM usage based on the count of inferred RDF triples. The experiments show that Apache Jena infers the solution quicker than other reasoners on the majority of tasks but consumes a significant amount of memory, while Clingo performs significantly better for combinatorial problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
ARQ - A SPARQL Processor for Jena. https://jena.apache.org/documentation//query/. Accessed 30 Apr 2021
DLV System. http://www.dlvsystem.com/dlv/. Accessed 30 Apr 2021
Jena - a free and open source Java framework for building Semantic Web and Linked Data applications. https://jena.apache.org. Accessed 30 Apr 2021
library(semweb/rdf11): The RDF database. https://www.swi-prolog.org/pldoc/man?section=semweb-rdf11. Accessed 30 Apr 2021
SPARQL Update. A language for updating RDF graphs. W3C Member Submission 15 July 2008. https://www.w3.org/Submission/SPARQL-Update/. Accessed 30 Apr 2021
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission 21 May 2004. https://www.w3.org/Submission/SWRL/. Accessed 30 Apr 2021
Adrian, W.T., et al.: The ASP System DLV: Advancements and Applications. KI - Künstliche Intelligenz, pp. 177–179 (2018). https://doi.org/10.1007/s13218-018-0533-0
Berners-Lee, T.: Cwm: General-purpose data processor for the semantic web. http://www.w3.org/2000/10/swap/doc/cwm (2000). Accessed 30 Apr 2021
Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 93–103 (2011). https://doi.org/10.1145/2043174.2043195
Calegari, R., Ciatto, G., Mascardi, V., Omicini, A.: Logic-based technologies for multi-agent systems: a systematic literature review. Autonomous Agents Multi-Agent Syst. 35(1), 1–67 (2020). https://doi.org/10.1007/s10458-020-09478-3
Chang, M., D’Aniello, G., Gaeta, M., Orciuoli, F., Sampson, D., Simonelli, C.: Building ontology-driven tutoring models for intelligent tutoring systems using data mining. IEEE Access 8, 48151–48162 (2020). https://doi.org/10.1109/access.2020.2979281
Cortés-Calabuig, A., Denecker, M., Arieli, O., Van Nuffelen, B., Bruynooghe, M.: On the local closed-world assumption of data-sources. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 145–157. Springer, Heidelberg (2005). https://doi.org/10.1007/11546207_12
Demaidi, M.N., Gaber, M.M., Filer, N.: OntoPeFeGe: ontology-based personalized feedback generator. IEEE Access 6, 31644–31664 (2018)
Dermeval, D., Albuquerque, J., Bittencourt, I.I., Isotani, S., Silva, A.P., Vassileva, J.: GaTO: An ontological model to apply gamification in intelligent tutoring systems. Frontiers Artif. Intell. 2, July 2019. https://doi.org/10.3389/frai.2019.00013. https://doi.org/10.3389/frai.2019.00013
Dougalis, A., Plexousakis, D.: AFFLOG: A Logic Based Affective Tutoring System. In: Kumar, V., Troussas, C. (eds.) ITS 2020. LNCS, vol. 12149, pp. 270–274. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49663-0_31
Franzoni, V., Biondi, G., Milani, A.: Emotional sounds of crowds: spectrogram-based analysis using deep learning. Multimed. Tools Appl. 79(47–48), 36063–36075 (2020)
Franzoni, V., Milani, A., Mengoni, P., Piccinato, F.: Artificial intelligence visual metaphors in e-learning interfaces for learning analytics. Appl. Sci. 10(20), 7195 (2020)
Franzoni, V., Pallottelli, S., Milani, A.: Reshaping higher education with e-studium, a 10-years capstone in academic computing. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12250, pp. 293–303. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58802-1_22
Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72200-7_23
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. CoRR abs/1705.09811 (2017)
Janhunen, T.: Cross-Translating Answer Set Programs Using the ASPTOOLS Collection. KI - Künstliche Intelligenz 32(2-3), 183–184 (2018). https://doi.org/10.1007/s13218-018-0529-9
Kultsova, M., Anikin, A., Zhukova, I., Dvoryankin, A.: Ontology-based learning content management system in programming languages domain. Commun. Comput. Inf. Sci. 535, 767–777 (2015). https://doi.org/10.1007/978-3-319-23766-4_61
Lamy, J.B.: Owlready: ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies. Artif. Intell. Med. 80 (2017). https://doi.org/10.1016/j.artmed.2017.07.002
Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench. In: Proceedings of the 18th International Conference on World Wide Web - WWW 2009. ACM Press (2009). https://doi.org/10.1145/1526709.1526790
Rattanasawad, T., Buranarach, M., Saikaew, K.R., Supnithi, T.: A comparative study of rule-based inference engines for the semantic web. IEICE Trans. Inf. Syst. E101.D(1), 82–89 (2018). https://doi.org/10.1587/transinf.2017swp0004. https://doi.org/10.1587/transinf.2017swp0004
Singh, G., Bhatia, S., Mutharaju, R.: OWL2Bench: a benchmark for OWL 2 reasoners. In: Pan, J.Z., Tamma, V., d’Amato, C., Janowicz, K., Fu, B., Polleres, A., Seneviratne, O., Kagal, L. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 81–96. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_6
Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semantics 5(2), 51–53 (2007). https://doi.org/10.1016/j.websem.2007.03.004. https://www.sciencedirect.com/science/article/pii/S1570826807000169, software Engineering and the Semantic Web
Sychev, O., Denisov, M., Anikin, A.: Verifying algorithm traces and fault reason determining using ontology reasoning. In: 19th International Semantic Web Conference on Demos and Industry Tracks: From Novel Ideas to Industrial Practice, ISWC-Posters 2020, vol. 2721, pp. 49–53 (2020). http://ceur-ws.org/Vol-2721/paper495.pdf
Sychev, O., Penskoy, N.: Ontology-based determining of evaluation order of c expressions and the fault reason for incorrect answers. In: 19th International Semantic Web Conference on Demos and Industry Tracks: From Novel Ideas to Industrial Practice, ISWC-Posters 2020, vol. 2721, pp. 44–48 (2020). http://ceur-ws.org/Vol-2721/paper494.pdf
Sychev, O., Denisov, M., Terekhov, G.: How it works: Algorithms - a tool for developing an understanding of control structures. In: Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science Education V. 2. ACM, June 2021. https://doi.org/10.1145/3456565.3460032
Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: Swi-prolog. Theory and Practice of Logic Programming 12(1–2), 67–96 (2012). https://doi.org/10.1017/S1471068411000494
Acknowledgment
The reported study was funded by RFBR, project number 20-07-00764 “Conceptual modeling of the knowledge domain on the comprehension level for intelligent decision-making systems in the learning”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Sychev, O.A., Anikin, A., Denisov, M. (2021). Inference Engines Performance in Reasoning Tasks for Intelligent Tutoring Systems. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-86960-1_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86959-5
Online ISBN: 978-3-030-86960-1
eBook Packages: Computer ScienceComputer Science (R0)