[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Numerical Solution of Biot Equations in Quasi-static State

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

This paper presents a numerical algorithm to simulate low-frequency loading of fluid-filled poroelastic materials and estimate the effective frequency-dependent strain-stress relations for such media. The algorithm solves Biot equation in quasi-static state in the frequency domain. Thus, a large-scale system of linear algebraic equations have to be solved for each temporal frequency. We use the direct solver, based on the LU decomposition to resolve the system of the linear equations. According to the presented numerical examples suggested algorithm allows reconstructing the stiffness tensor within a wide range of frequencies for the realistic large-scale samples within several minutes. Thus, the estimation of the frequency-dependent stiffness tensors can be done in a routine manner and statistical data may be accumulated.

The research was supported by the Russian Science foundation grant no. 19-77-20004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bazaikin, Y., et al.: Effect of CT image size and resolution on the accuracy of rock property estimates. J. Geophys. Res. Solid Earth 122(5), 3635–3647 (2017)

    Article  Google Scholar 

  2. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. ii. higher frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956)

    Google Scholar 

  3. Biot, M.A.: Theory of propagation of elastic waves in fluid-saturated porous solid. i. low-frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956)

    Google Scholar 

  4. Carcione, J.M., Cavallini, F.: A rheological model for anelastic anisotropic media with applications to seismic wave propagation. Geophys. J. Int. 119, 338–348 (1994)

    Article  Google Scholar 

  5. Christensen, R.M.: Theory of Viscoelasticity, an Introduction. Academic Press, New York (1971)

    Google Scholar 

  6. Germán Rubino, J., Guarracino, L., Müller, T.M., Holliger, K.: Do seismic waves sense fracture connectivity? Geophys. Res. Lett. 40(4), 692–696 (2013)

    Article  Google Scholar 

  7. Guo, J., Rubino, J.G., Glubokovskikh, S., Gurevich, B.: Effects of fracture intersections on seismic dispersion: theoretical predictions versus numerical simulations. Geophys. Prospect. 65(5), 1264–1276 (2017)

    Article  Google Scholar 

  8. Huang, F., et al.: The first post-injection seismic monitor survey at the Ketzin pilot CO2 storage site: results from time-lapse analysis. Geophys. Prospect. 66(1), 62–84 (2018)

    Article  Google Scholar 

  9. Hunziker, J., et al.: Seismic attenuation and stiffness modulus dispersion in porous rocks containing stochastic fracture networks. J. Geophys. Res. Solid Earth 123(1), 125–143 (2018)

    Article  Google Scholar 

  10. Kong, L., Gurevich, B., Zhang, Y., Wang, Y.: Effect of fracture fill on frequency-dependent anisotropy of fractured porous rocks. Geophys. Prospect. 65(6), 1649–1661 (2017)

    Article  Google Scholar 

  11. Lisitsa, V., Podgornova, O., Tcheverda, V.: On the interface error analysis for finite difference wave simulation. Comput. Geosci. 14(4), 769–778 (2010)

    Article  Google Scholar 

  12. Marty, N.C.M., Hamm, V., Castillo, C., Thiéry, D., Kervévan, C.: Modelling water-rock interactions due to long-term cooled-brine reinjection in the Dogger carbonate aquifer (Paris basin) based on in-situ geothermal well data. Geothermics 88, 101899 (2020)

    Google Scholar 

  13. Masson, Y.J., Pride, S.R., Nihei, K.T.: Finite difference modeling of Biot’s poroelastic equations at seismic frequencies. J. Geophys. Res. Solid Earth 111(B10), 305 (2006)

    Article  Google Scholar 

  14. Menke, H.P., Reynolds, C.A., Andrew, M.G., Pereira Nunes, J.P., Bijeljic, B., Blunt, M.J.: 4D multi-scale imaging of reactive flow in carbonates: assessing the impact of heterogeneity on dissolution regimes using streamlines at multiple length scales. Chem. Geol. 481, 27–37 (2018)

    Article  Google Scholar 

  15. Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R.J., Halada, L.: 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bull. Seismol. Soc. Am. 92(8), 3042–3066 (2002)

    Article  Google Scholar 

  16. Muller, T.M., Gurevich, B., Lebedev, M.: Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks – a review. Geophysics 75(5), 75A147-75A164 (2010)

    Article  Google Scholar 

  17. Novikov, M.A., Lisitsa, V.V., Bazaikin, Y.V.: Wave propagation in fractured-porous media with different percolation length of fracture systems. Lobachevskii J. Math. 41(8), 1533–1544 (2020)

    Article  MathSciNet  Google Scholar 

  18. Ovaysi, S., Wheeler, M., Balhoff, M.: Quantifying the representative size in porous media. Transp. Porous Media 104(2), 349–362 (2014)

    Article  Google Scholar 

  19. Rubino, J.G., Muller, T.M., Guarracino, L., Milani, M., Holliger, K.: Seismoacoustic signatures of fracture connectivity. J. Geophys. Res. Solid Earth 119(3), 2252–2271 (2014)

    Article  Google Scholar 

  20. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)

    Google Scholar 

  21. Salaun, N., et al.: High-resolution 3D seismic imaging and refined velocity model building improve the image of a deep geothermal reservoir in the Upper Rhine Graben. Lead. Edge 39(12), 857–863 (2020)

    Article  Google Scholar 

  22. Samarskii, A.A.: The Theory of Difference Schemes, Pure and Applied Mathematics, vol. 240. CRC Press (2001)

    Google Scholar 

  23. Vavrycuk, V.: Velocity, attenuation, and quality factor in anisotropic viscoelastic media: a perturbation approach. Geophysics 73(5), D63–D73 (2008)

    Article  Google Scholar 

  24. Vishnevsky, D., Lisitsa, V., Tcheverda, V., Reshetova, G.: Numerical study of the interface errors of finite-difference simulations of seismic waves. Geophysics 79(4), T219–T232 (2014)

    Article  Google Scholar 

  25. Xu, C., Dowd, P.A., Mardia, K.V., Fowell, R.J.: A connectivity index for discrete fracture networks. Math. Geol. 38(5), 611–634 (2006)

    Article  Google Scholar 

  26. Zhu, Y., Tsvankin, I.: Plane-wave propagation in attenuative transversely isotropic media. Geophysics 71(2), T17–T30 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Lisitsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Solovyev, S., Novikov, M., Kopylova, A., Lisitsa, V. (2021). Numerical Solution of Biot Equations in Quasi-static State. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics