Abstract
Computational fluid dynamics (CFD) analysis is carried out to evaluate the early stages of the aerobreakup of a cylindrical water column due to the impact of a travelling plane shock wave. The mean flow in a shock tube is simulated by adopting the compressible unsteady Reynolds-averaged Navier-Stokes modelling approach, where the governing equations are solved by means of a finite volume-based numerical technique. The volume of fluid method is employed to track the transient interface between air and water on the fixed numerical mesh. The present computational modelling approach for industrial gas dynamics applications is verified to have significant practical potential by making a comparison with reference experiments and numerical simulations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu, N., Wang, Z., Mingbo, S., Wang, H., Wang, B.: Numerical simulation of liquid droplet breakup in supersonic flows. Acta Astronaut. 145, 116–130 (2018)
Villermaux, E.: Fragmentation. Annu. Rev. Fluid Mech. 39, 419–446 (2017)
Wang, Z., Hopfes, T., Giglmaier, M., Adams, N.A.: Effect of Mach number on droplet aerobreakup in shear stripping regime. Exp. Fluids 61, 193 (2020)
Poplavski, S., Minakov, A., Shebeleva, A., Boiko, V.: On the interaction of water droplet with a shock wave: experiment and numerical simulation. Int. J. Multiph. Flow 127, 103273 (2020)
Meng, J.C., Colonius, T.: Numerical simulations of the early stages of high-speed droplet breakup. Shock Waves 25, 399–414 (2015)
Sembian, S., Liverts, M., Tillmark, N., Apazidis, N.: Plane shock wave interaction with a cylindrical water column. Phys. Fluids 28, 056102 (2016)
Rapagnani, D., Buompane, R., Di Leva, A., et al.: A supersonic jet target for the cross section measurement of the 12C(\(\alpha \), \(\gamma \))16O reaction with the recoil mass separator ERNA. Nucl. Instrum. Meth. Phys. Res. B 407, 217–221 (2017)
Wilcox, D.C.: Turbulence Modeling for CFD, 3rd edn. DCW Industries Inc, La Canada (2006)
Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)
Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)
Igra, D., Takayama, K.: A study of shock wave loading on a cylindrical water column. Technical report, vol. 13, pp. 19–36. Institute of Fluid Science, Tohoku University (2001)
Theofanous, T.G., Li, J.G.: On the physics of aerobreakup. Phys. Fluids 20, 052103 (2008)
Theofanous, T.G.: Aerobreakup of Newtonian and viscoelastic liquids. Annu. Rev. Fluid Mech. 43, 661–690 (2011)
Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)
Reina, G.P., De Stefano, G.: Computational evaluation of wind loads on sun-tracking ground-mounted photovoltaic panel arrays. J. Wind Eng. Ind. Aerodyn. 170, 283–293 (2017)
De Stefano, G., Natale, N., Reina, G.P., Piccolo, A.: Computational evaluation of aerodynamic loading on retractable landing-gears. Aerospace 7, 68 (2020)
Natale, N., Salomone, T., De Stefano, G., Piccolo, A.: Computational evaluation of control surfaces aerodynamics for a mid-range commercial aircraft. Aerospace 7, 139 (2020)
Iannelli, P., Denaro, F.M., De Stefano, G.: A deconvolution-based fourth-order finite volume method for incompressible flows on non-uniform grids. Int. J. Numer. Methods Fluids 43, 431–462 (2003)
Rossano, V., De Stefano, G.: Computational evaluation of shock wave interaction with a cylindrical water column. Appl. Sci. 11, 4934 (2021)
Regele, J.D., Vasilyev, O.V.: An adaptive wavelet-collocation method for shock computations. Int. J. Comput. Fluid Dyn. 23, 503–518 (2009)
Hosseinzadeh-Nik, Z., Aslani, M., Owkes, M., Regele, J.D.: Numerical simulation of a shock wave impacting a droplet using the adaptive wavelet-collocation method. In: Proceedings of the ILASS-Americas 28th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI, USA, May 2016
De Stefano, G., Vasilyev, O.V.: Wavelet-based adaptive large-eddy simulation with explicit filtering. J. Comput. Phys. 238, 240–254 (2013)
De Stefano, G., Brown-Dymkoski, E., Vasilyev, O.V.: Wavelet-based adaptive large-eddy simulation of supersonic channel flow. J. Fluid Mech. 901, A13 (2020)
De Stefano, G., Vasilyev, O.V.: Hierarchical adaptive eddy-capturing approach for modeling and simulation of turbulent flows. Fluids 6, 83 (2021)
De Stefano, G., Vasilyev, O.V., Brown-Dymkoski, E.: Wavelet-based adaptive unsteady Reynolds-averaged turbulence modelling of external flows. J. Fluid Mech. 837, 765–787 (2018)
Ge, X., Vasilyev, O.V., De Stefano, G., Hussaini, M.Y.: Wavelet-based adaptive unsteady Reynolds-averaged Navier-Stokes computations of wall-bounded internal and external compressible turbulent flows. In: Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, January 2018
Ge, X., Vasilyev, O.V., De Stefano, G., Hussaini, M.Y.: Wavelet-based adaptive unsteady Reynolds-averaged Navier-Stokes simulations of wall-bounded compressible turbulent flows. AIAA J. 58, 1529–1549 (2020)
Shen, B., Ye, Q., Tiedje, O., Domnick, J.: Simulation of the primary breakup of non-Newtonian liquids at a high-speed rotary bell atomizer for spray painting processes using a VOF-Lagrangian hybrid model. In: Proceedings of the 29th European Conference on Liquid Atomization and Spray Systems, Paris, France, September 2019
Nejadmalayeri, A., Vezolainen, A., De Stefano, G., Vasilyev, O.V.: Fully adaptive turbulence simulations based on Lagrangian Spatio-temporally varying wavelet thresholding. J. Fluid Mech. 749, 794–817 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Rossano, V., De Stefano, G. (2021). CFD Prediction of Shock Wave Impacting a Cylindrical Water Column. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-86653-2_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86652-5
Online ISBN: 978-3-030-86653-2
eBook Packages: Computer ScienceComputer Science (R0)