[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

CFD Prediction of Shock Wave Impacting a Cylindrical Water Column

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Computational fluid dynamics (CFD) analysis is carried out to evaluate the early stages of the aerobreakup of a cylindrical water column due to the impact of a travelling plane shock wave. The mean flow in a shock tube is simulated by adopting the compressible unsteady Reynolds-averaged Navier-Stokes modelling approach, where the governing equations are solved by means of a finite volume-based numerical technique. The volume of fluid method is employed to track the transient interface between air and water on the fixed numerical mesh. The present computational modelling approach for industrial gas dynamics applications is verified to have significant practical potential by making a comparison with reference experiments and numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, N., Wang, Z., Mingbo, S., Wang, H., Wang, B.: Numerical simulation of liquid droplet breakup in supersonic flows. Acta Astronaut. 145, 116–130 (2018)

    Article  Google Scholar 

  2. Villermaux, E.: Fragmentation. Annu. Rev. Fluid Mech. 39, 419–446 (2017)

    Article  MathSciNet  Google Scholar 

  3. Wang, Z., Hopfes, T., Giglmaier, M., Adams, N.A.: Effect of Mach number on droplet aerobreakup in shear stripping regime. Exp. Fluids 61, 193 (2020)

    Article  Google Scholar 

  4. Poplavski, S., Minakov, A., Shebeleva, A., Boiko, V.: On the interaction of water droplet with a shock wave: experiment and numerical simulation. Int. J. Multiph. Flow 127, 103273 (2020)

    Article  Google Scholar 

  5. Meng, J.C., Colonius, T.: Numerical simulations of the early stages of high-speed droplet breakup. Shock Waves 25, 399–414 (2015)

    Article  Google Scholar 

  6. Sembian, S., Liverts, M., Tillmark, N., Apazidis, N.: Plane shock wave interaction with a cylindrical water column. Phys. Fluids 28, 056102 (2016)

    Article  Google Scholar 

  7. Rapagnani, D., Buompane, R., Di Leva, A., et al.: A supersonic jet target for the cross section measurement of the 12C(\(\alpha \), \(\gamma \))16O reaction with the recoil mass separator ERNA. Nucl. Instrum. Meth. Phys. Res. B 407, 217–221 (2017)

    Article  Google Scholar 

  8. Wilcox, D.C.: Turbulence Modeling for CFD, 3rd edn. DCW Industries Inc, La Canada (2006)

    Google Scholar 

  9. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  Google Scholar 

  10. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    Article  MathSciNet  Google Scholar 

  11. Igra, D., Takayama, K.: A study of shock wave loading on a cylindrical water column. Technical report, vol. 13, pp. 19–36. Institute of Fluid Science, Tohoku University (2001)

    Google Scholar 

  12. Theofanous, T.G., Li, J.G.: On the physics of aerobreakup. Phys. Fluids 20, 052103 (2008)

    Article  Google Scholar 

  13. Theofanous, T.G.: Aerobreakup of Newtonian and viscoelastic liquids. Annu. Rev. Fluid Mech. 43, 661–690 (2011)

    Article  Google Scholar 

  14. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  15. Reina, G.P., De Stefano, G.: Computational evaluation of wind loads on sun-tracking ground-mounted photovoltaic panel arrays. J. Wind Eng. Ind. Aerodyn. 170, 283–293 (2017)

    Article  Google Scholar 

  16. De Stefano, G., Natale, N., Reina, G.P., Piccolo, A.: Computational evaluation of aerodynamic loading on retractable landing-gears. Aerospace 7, 68 (2020)

    Article  Google Scholar 

  17. Natale, N., Salomone, T., De Stefano, G., Piccolo, A.: Computational evaluation of control surfaces aerodynamics for a mid-range commercial aircraft. Aerospace 7, 139 (2020)

    Article  Google Scholar 

  18. Iannelli, P., Denaro, F.M., De Stefano, G.: A deconvolution-based fourth-order finite volume method for incompressible flows on non-uniform grids. Int. J. Numer. Methods Fluids 43, 431–462 (2003)

    Article  Google Scholar 

  19. Rossano, V., De Stefano, G.: Computational evaluation of shock wave interaction with a cylindrical water column. Appl. Sci. 11, 4934 (2021)

    Article  Google Scholar 

  20. Regele, J.D., Vasilyev, O.V.: An adaptive wavelet-collocation method for shock computations. Int. J. Comput. Fluid Dyn. 23, 503–518 (2009)

    Article  Google Scholar 

  21. Hosseinzadeh-Nik, Z., Aslani, M., Owkes, M., Regele, J.D.: Numerical simulation of a shock wave impacting a droplet using the adaptive wavelet-collocation method. In: Proceedings of the ILASS-Americas 28th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI, USA, May 2016

    Google Scholar 

  22. De Stefano, G., Vasilyev, O.V.: Wavelet-based adaptive large-eddy simulation with explicit filtering. J. Comput. Phys. 238, 240–254 (2013)

    Article  MathSciNet  Google Scholar 

  23. De Stefano, G., Brown-Dymkoski, E., Vasilyev, O.V.: Wavelet-based adaptive large-eddy simulation of supersonic channel flow. J. Fluid Mech. 901, A13 (2020)

    Article  MathSciNet  Google Scholar 

  24. De Stefano, G., Vasilyev, O.V.: Hierarchical adaptive eddy-capturing approach for modeling and simulation of turbulent flows. Fluids 6, 83 (2021)

    Article  Google Scholar 

  25. De Stefano, G., Vasilyev, O.V., Brown-Dymkoski, E.: Wavelet-based adaptive unsteady Reynolds-averaged turbulence modelling of external flows. J. Fluid Mech. 837, 765–787 (2018)

    Article  MathSciNet  Google Scholar 

  26. Ge, X., Vasilyev, O.V., De Stefano, G., Hussaini, M.Y.: Wavelet-based adaptive unsteady Reynolds-averaged Navier-Stokes computations of wall-bounded internal and external compressible turbulent flows. In: Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, January 2018

    Google Scholar 

  27. Ge, X., Vasilyev, O.V., De Stefano, G., Hussaini, M.Y.: Wavelet-based adaptive unsteady Reynolds-averaged Navier-Stokes simulations of wall-bounded compressible turbulent flows. AIAA J. 58, 1529–1549 (2020)

    Article  Google Scholar 

  28. Shen, B., Ye, Q., Tiedje, O., Domnick, J.: Simulation of the primary breakup of non-Newtonian liquids at a high-speed rotary bell atomizer for spray painting processes using a VOF-Lagrangian hybrid model. In: Proceedings of the 29th European Conference on Liquid Atomization and Spray Systems, Paris, France, September 2019

    Google Scholar 

  29. Nejadmalayeri, A., Vezolainen, A., De Stefano, G., Vasilyev, O.V.: Fully adaptive turbulence simulations based on Lagrangian Spatio-temporally varying wavelet thresholding. J. Fluid Mech. 749, 794–817 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano De Stefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rossano, V., De Stefano, G. (2021). CFD Prediction of Shock Wave Impacting a Cylindrical Water Column. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics