[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mengerian Temporal Graphs Revisited

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2021)

Abstract

A temporal graph \(\mathcal{G}\) is a graph that changes with time. More specifically, it is a pair \((G, \lambda )\) where G is a graph and \(\lambda \) is a function on the edges of G that describes when each edge \(e\in E(G)\) is active. Given vertices \(s,t\in V(G)\), a temporal \(s,t\)-path is a path in G that traverses edges in non-decreasing time; and if st are non-adjacent, then a vertex temporal \(s,t\)-cut is a subset \(S\subseteq V(G)\) whose removal destroys all temporal \(s,t\)-paths.

It is known that Menger’s Theorem does not hold on this context, i.e., that the maximum number of internally vertex disjoint temporal \(s,t\)-paths is not necessarily equal to the minimum size of a vertex temporal \(s,t\)-cut. In a seminal paper, Kempe, Kleinberg and Kumar (STOC’2000) defined a graph G to be Mengerian if equality holds on \((G,\lambda )\) for every function \(\lambda \). They then proved that, if each edge is allowed to be active only once in \((G,\lambda )\), then G is Mengerian if and only if G has no gem as topological minor. In this paper, we generalize their result by allowing edges to be active more than once, giving a characterization also in terms of forbidden structures. We also provide a polynomial time recognition algorithm.

Supported by CNPq grants 303803/2020-7 and 437841/2018-9, FUNCAP/CNPq grant PNE-0112-00061.01.00/16, and CAPES (PhD student funding).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We adopt the definition of [16], where a graph can have multiple edges incident to the same pair of vertices. This is sometimes called multigraph.

References

  1. Berman, K.A.: Vulnerability of scheduled networks and a generalization of Menger’s theorem. Netw.: Int. J. 28(3), 125–134 (1996)

    Article  MathSciNet  Google Scholar 

  2. Bhadra, S., Ferreira, A.: Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks. In: Pierre, S., Barbeau, M., Kranakis, E. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 259–270. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39611-6_23

    Chapter  Google Scholar 

  3. Campos, V., Lopes, R., Marino, A., Silva, A.: Edge-disjoint branchings in temporal graphs. In: Gąsieniec, L., Klasing, R., Radzik, T. (eds.) IWOCA 2020. LNCS, vol. 12126, pp. 112–125. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48966-3_9

    Chapter  Google Scholar 

  4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)

    Article  Google Scholar 

  5. Casteigts, A., Himmel, A.-S., Molter, H., Zschoche, P.: Finding temporal paths under waiting time constraints. In: 31st International Symposium on Algorithms and Computation, ISAAC, volume 181 of LIPIcs, pp. 30:1–30:18 (2020)

    Google Scholar 

  6. Jessica Enright and Rowland Raymond Kao: Epidemics on dynamic networks. Epidemics 24, 88–97 (2018)

    Article  Google Scholar 

  7. Fluschnik, T., Molter, H., Niedermeier, R., Renken, M., Zschoche, P.: Temporal graph classes: a view through temporal separators. Theoret. Comput. Sci. 806, 197–218 (2020)

    Article  MathSciNet  Google Scholar 

  8. Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, pp. 479–488 (2011)

    Google Scholar 

  9. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 1–30 (2015). https://doi.org/10.1140/epjb/e2015-60657-4

    Article  Google Scholar 

  10. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64, 820–842 (2002)

    Article  MathSciNet  Google Scholar 

  11. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the modeling of interactions over time. Soc. Netw. Anal. Min. 8(1), 1–29 (2018). https://doi.org/10.1007/s13278-018-0537-7

    Article  MATH  Google Scholar 

  12. Menger, K.: Zur allgemeinen kurventheorie. Fundam. Math. 10(1), 96–115 (1927)

    Article  Google Scholar 

  13. Mertzios, G.B., Michail, O., Spirakis, P.G.: Temporal network optimization subject to connectivity constraints. Algorithmica 81(4), 1416–1449 (2019). https://doi.org/10.1007/s00453-018-0478-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4), 239–280 (2016)

    Article  MathSciNet  Google Scholar 

  15. Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., Latora, V.: Graph metrics for temporal networks. In: Holme, P., Saramäki, J. (eds.) Temporal Networks. Understanding Complex Systems, pp. 15–40. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36461-7_2

    Chapter  Google Scholar 

  16. Douglas Brent West: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  17. Bui Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(02), 267–285 (2003)

    Article  MathSciNet  Google Scholar 

  18. Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding small separators in temporal graphs. J. Comput. Syst. Sci. 107, 72–92 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen Ibiapina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibiapina, A., Silva, A. (2021). Mengerian Temporal Graphs Revisited. In: Bampis, E., Pagourtzis, A. (eds) Fundamentals of Computation Theory. FCT 2021. Lecture Notes in Computer Science(), vol 12867. Springer, Cham. https://doi.org/10.1007/978-3-030-86593-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86593-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86592-4

  • Online ISBN: 978-3-030-86593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics