[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Physics Knowledge Discovery via Neural Differential Equation Embedding

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track (ECML PKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12979))

Abstract

Despite much interest, physics knowledge discovery from experiment data remains largely a manual trial-and-error process. This paper proposes neural differential equation embedding (NeuraDiff), an end-to-end approach to learn a physics model characterized by a set of partial differential equations directly from experiment data. The key idea is the integration of two neural networks – one recognition net extracting the values of physics model variables from experimental data, and the other neural differential equation net simulating the temporal evolution of the physics model. Learning is completed by matching the outcomes of the two neural networks. We apply NeuraDiff to the real-world application of tracking and learning the physics model of nano-scale defects in crystalline materials under irradiation and high temperature. Experimental results demonstrate that NeuraDiff produces highly accurate tracking results while capturing the correct dynamics of nano-scale defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, S.M., Cahn, J.W.: Ground state structures in ordered binary alloys with second neighbor interactions. Acta Metallurgica 20(3), 423–433 (1972)

    Article  Google Scholar 

  2. Amos, B., Kolter, J.Z.: Optnet: differentiable optimization as a layer in neural networks. In: International Conference on Machine Learning, pp. 136–145 (2017)

    Google Scholar 

  3. Attia, P.M., et al.: Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 578(7795), 397–402 (2020)

    Article  Google Scholar 

  4. Azimi, J., Fern, X.Z., Fern, A.: Budgeted optimization with constrained experiments. J. Artif. Int. Res. 56(1), 119–152 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Beck, C., Weinan, E., Jentzen, A.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. J. Nonlinear Sci. 29(4), 1563–1619 (2019). https://doi.org/10.1007/s00332-018-9525-3

  6. de Bezenac, E., Pajot, A., Gallinari, P.: Deep learning for physical processes: incorporating prior scientific knowledge. In: International Conference on Learning Representations (2018)

    Google Scholar 

  7. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Google Scholar 

  8. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Adv. Neural Inf. Process. Syst. 31, 6571–6583 (2018)

    Google Scholar 

  9. Chen, Z., Zhang, J., Arjovsky, M., Bottou, L.: Symplectic recurrent neural networks. In: 8th International Conference on Learning Representations, ICLR (2020)

    Google Scholar 

  10. Demeester, T.: System identification with time-aware neural sequence models. arXiv preprint arXiv:1911.09431 (2019)

  11. Devulapalli, P., Dilkina, B., Xue, Y.: Embedding conjugate gradient in learning random walks for landscape connectivity modeling in conservation. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 4338–4344. International Joint Conferences on Artificial Intelligence Organization (2020)

    Google Scholar 

  12. Ermon, S., Le Bras, R., Gomes, C.P., Selman, B., van Dover, R.B.: SMT-aided combinatorial materials discovery. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 172–185. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_14

    Chapter  Google Scholar 

  13. Ferber, A., Wilder, B., Dilkina, B., Tambe, M.: Mipaal: mixed integer program as a layer. In: AAAI, pp. 1504–1511 (2020)

    Google Scholar 

  14. Finzi, M., Wang, K.A., Wilson, A.G.: Simplifying Hamiltonian and Lagrangian neural networks via explicit constraints. Adv. Neural Inf. Process. Syst. 33, 13581 (2020)

    Google Scholar 

  15. Gomes, C.P., et al.: Crystal: a multi-agent AI system for automated mapping of materials’ crystal structures. MRS Commun. 9(2), 600–608 (2019)

    Google Scholar 

  16. Greydanus, S., Dzamba, M., Yosinski, J.: Hamiltonian neural networks. Adv. Neural Inf. Process. Syst. 32, 15379–15389 (2019)

    Google Scholar 

  17. Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial differential equations using deep learning. Proc. Nat. Acad. Sci. 115(34), 8505–8510 (2018)

    Google Scholar 

  18. Hu, Y., et al.: Difftaichi: differentiable programming for physical simulation. In: 8th International Conference on Learning Representations, ICLR (2020)

    Google Scholar 

  19. Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoencoder for molecular graph generation. In: International Conference on Machine Learning (2018)

    Google Scholar 

  20. Jin, W., Yang, K., Barzilay, R., Jaakkola, T.: Learning multimodal graph-to-graph translation for molecule optimization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  21. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: Guyon, I., et al. (eds.) Adv. Neural Inf. Process. Syst. 30, 6348–6358 (2017)

    Google Scholar 

  22. Kidger, P., Morrill, J., Foster, J., Lyons, T.: Neural controlled differential equations for irregular time series. arXiv:2005.08926 (2020)

  23. Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoencoder. In: International Conference on Machine Learning, pp. 1945–1954 (2017)

    Google Scholar 

  24. Long, Z., Lu, Y., Ma, X., Dong, B.: Pde-net: Learning pdes from data. In: International Conference on Machine Learning, pp. 3208–3216 (2018)

    Google Scholar 

  25. Lu, Y., Zhong, A., Li, Q., Dong, B.: Beyond finite layer neural networks: bridging deep architectures and numerical differential equations. In: International Conference on Machine Learning, pp. 3276–3285 (2018)

    Google Scholar 

  26. Lutter, M., Ritter, C., Peters, J.: Deep Lagrangian networks: using physics as model prior for deep learning. In: International Conference on Learning Representations (2018)

    Google Scholar 

  27. Ma, T., Chen, J., Xiao, C.: Constrained generation of semantically valid graphs via regularizing variational autoencoders. In: Advances in Neural Information Processing Systems, pp. 7113–7124 (2018)

    Google Scholar 

  28. Ma, T., Xiao, C., Zhou, J., Wang, F.: Drug similarity integration through attentive multi-view graph auto-encoders. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI, pp. 3477–3483 (7 2018)

    Google Scholar 

  29. Matsubara, T., Ishikawa, A., Yaguchi, T.: Deep energy-based modeling of discrete-time physics. In: Advances in Neural Information Processing Systems 33 (NeurIPS2020) (2020)

    Google Scholar 

  30. Millett, P.C., El-Azab, A., Rokkam, S., Tonks, M., Wolf, D.: Phase-field simulation of irradiated metals: part i: void kinetics. Comput. Mater. Sci. 50(3), 949–959 (2011)

    Article  Google Scholar 

  31. Niu, T., et al.: Recent studies on void shrinkage in metallic materials subjected to in situ heavy ion irradiations. JOM 72(11), 4008–4016 (2020). https://doi.org/10.1007/s11837-020-04358-3

    Article  Google Scholar 

  32. Portwood, G.D., et al.: Turbulence forecasting via neural ode. arXiv preprint arXiv:1911.05180 (2019)

  33. Raza, A., Sturluson, A., Simon, C.M., Fern, X.: Message passing neural networks for partial charge assignment to metal-organic frameworks. J. Phys. Chem. C 124(35), 19070–19082 (2020)

    Article  Google Scholar 

  34. Roberts, G., Haile, S.Y., Sainju, R., Edwards, D.J., Hutchinson, B., Zhu, Y.: Deep learning for semantic segmentation of defects in advanced stem images of steels. Sci. Rep. 9(1), 1–12 (2019)

    Google Scholar 

  35. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  36. Sæmundsson, S., Terenin, A., Hofmann, K., Deisenroth, M.P.: Variational integrator networks for physically structured embeddings. In: The 23rd International Conference on Artificial Intelligence and Statistics, vol. 108, pp. 3078–3087 (2020)

    Google Scholar 

  37. Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., Battaglia, P.W.: Learning to simulate complex physics with graph networks. In: International Conference on Machine Learning (2020)

    Google Scholar 

  38. Stewart, R., Ermon, S.: Label-free supervision of neural networks with physics and domain knowledge. In: 31 AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  39. Tong, Y., Xiong, S., He, X., Pan, G., Zhu, B.: Symplectic neural networks in Taylor series form for Hamiltonian systems. ArXiv abs/2005.04986 (2020)

  40. Zhong, Y.D., Dey, B., Chakraborty, A.: Symplectic ode-net: learning hamiltonian dynamics with control. In: 8th International Conference on Learning Representations, ICLR (2020)

    Google Scholar 

Download references

Acknowledgements

This research was supported by NSF grants IIS-1850243, CCF-1918327. We thank anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yexiang Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, Y., Nasim, M., Zhang, M., Fan, C., Zhang, X., El-Azab, A. (2021). Physics Knowledge Discovery via Neural Differential Equation Embedding. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12979. Springer, Cham. https://doi.org/10.1007/978-3-030-86517-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86517-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86516-0

  • Online ISBN: 978-3-030-86517-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics