[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Synthesizing Training Data for Handwritten Music Recognition

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 (ICDAR 2021)

Abstract

Handwritten music recognition is a challenging task that could be of great use if mastered, e.g., to improve the accessibility of archival manuscripts or to ease music composition. Many modern machine learning techniques, however, cannot be easily applied to this task because of the limi‘ted availability of high-quality training data. Annotating such data manually is expensive and thus not feasible at the necessary scale. This problem has already been tackled in other fields by training on automatically generated synthetic data. We bring this approach to handwritten music recognition and present a method to generate synthetic handwritten music images (limited to monophonic scores) and show that training on such data leads to state-of-the-art results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://lilypond.org/.

  2. 2.

    https://www.verovio.org/.

  3. 3.

    https://github.com/Jirka-Mayer/Mashcima.

  4. 4.

    https://apacha.github.io/OMR-Datasets/.

  5. 5.

    http://opac.rism.info/.

  6. 6.

    Writers(pages): 13(2, 3, 16); 17(1); 20(2, 3, 16); 34(2, 3, 16); 41(2, 3, 16); 49(3, 5, 9, 11).

References

  1. Baró, A., Badal, C., Fornés, A.: Handwritten historical music recognition by sequence-to-sequence with attention mechanism. In: 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), Dortmund, Germany, pp. 205–210 (2020)

    Google Scholar 

  2. Baró, A., Riba, P., Calvo-Zaragoza, J., Fornés, A.: From optical music recognition to handwritten music recognition: a baseline. Pattern Recogn. Lett. 123, 1–8 (2019)

    Article  Google Scholar 

  3. Baró, A., Riba, P., Fornés, A.: Towards the recognition of compound music notes in handwritten music scores. In: 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), Shenzhen, China, pp. 465–470 (2016)

    Google Scholar 

  4. Calvo-Zaragoza, J., Castellanos, F., Vigliensoni, G., Fujinaga, I.: Deep neural networks for document processing of music score images. Appl. Sci. 8(5), 654 (2018)

    Article  Google Scholar 

  5. Calvo-Zaragoza, J., Hajič, J., Jr., Pacha, A.: Understanding optical music recognition. ACM Comput. Surv. 53(4), 77 (2020)

    Google Scholar 

  6. Calvo-Zaragoza, J., Rizo, D.: End-to-end neural optical music recognition of monophonic scores. Appl. Sci. 8(4), 606 (2018)

    Article  Google Scholar 

  7. Calvo-Zaragoza, J., Toselli, A., Vidal, E.: Handwritten music recognition for mensural notation with convolutional recurrent neural networks. Pattern Recogn. Lett. 128, 115–121 (2019)

    Article  Google Scholar 

  8. Fornés, A., Dutta, A., Gordo, A., Lladós, J.: CVC-MUSCIMA: a ground truth of handwritten music score images for writer identification and staff removal. Int. J. Doc. Anal. Recogn. 15, 243–251 (2011)

    Article  Google Scholar 

  9. Fornés, A., Sánchez, G.: Analysis and recognition of music scores. In: Doermann, D., Tombre, K. (eds.) Handbook of Document Image Processing and Recognition, pp. 749–774. Springer, London (2014). https://doi.org/10.1007/978-0-85729-859-1_24

    Chapter  Google Scholar 

  10. Good, M.: MusicXML: An internet-friendly format for sheet music. In: Proceedings of the XML Conference, Orlando, FL, USA, pp. 3–4 (2001)

    Google Scholar 

  11. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification. In: Proceedings of the 23rd International Conference on Machine Learning (ICML), Pittsburgh, PA, USA, pp. 369–376 (2006)

    Google Scholar 

  12. Hajič, J., Jr., Pecina, P.: The MUSCIMA++ dataset for handwritten optical music recognition. In: 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, Japan, pp. 39–46 (2017)

    Google Scholar 

  13. Hwang, K., Sung, W.: Character-level incremental speech recognition with recurrent neural networks. In: IEEE International Conference on Acoustics. Speech and Signal Processing (ICASSP), Lujiazui, Shanghai, China, pp. 5335–5339 (2016)

    Google Scholar 

  14. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and artificial neural networks for natural scene text recognition (2014)

    Google Scholar 

  15. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations (ICLR), San Diego, USA (2014)

    Google Scholar 

  16. Krishnan, P., Jawahar, C.: Generating synthetic data for text recognition (2016)

    Google Scholar 

  17. Levenshtein, V.: Binary codes capable of correcting spurious insertions and deletions of ones. Probl. Inf. Transm. 1, 8–17 (1965)

    MATH  Google Scholar 

  18. Pacha, A., Calvo-Zaragoza, J., Hajič, J., Jr.: Learning notation graph construction for full-pipeline optical music recognition. In: 20th International Society for Music Information Retrieval Conference (ISMIR), Delft, Netherlands, pp. 75–82 (2019)

    Google Scholar 

  19. Pacha, A., Choi, K.Y., Eidenberger, H., Ricquebourg, Y., Coüasnon, B., Zanibbi, R.: Handwritten music object detection: open issues and baseline results. In: 13th IAPR Interantional Workshop on Document Analysis Systems (DAS), Vienna, Austria, pp. 163–168 (2018)

    Google Scholar 

  20. Peng, X., Sun, B., Ali, K., Saenko, K.: Learning deep object detectors from 3D models. In: IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp. 1278–1286 (2015)

    Google Scholar 

  21. Puigcerver, J.: Are multidimensional recurrent layers really necessary for handwritten text recognition? In: 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, Japan, pp. 67–72 (2017)

    Google Scholar 

  22. Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marçal, A., Guedes, C., Cardoso, J.: Optical music recognition: State-of-the-art and open issues. Int. J. Multimed. Inf. Retr. 1, 173–190 (2012)

    Article  Google Scholar 

  23. Roland, P.: The music encoding initiative (MEI). In: First International Conference on Musical Application Using XML, Milan, Italy, pp. 55–59 (2002)

    Google Scholar 

  24. Rothstein, J.: MIDI: A Comprehensive Introduction, vol. 7. AR Editions, Inc. (1992)

    Google Scholar 

  25. Scheidl, H.: Handwritten text recognition in historical documents. Master’s thesis, Vienna University of Technology (2018)

    Google Scholar 

  26. Tuggener, L., Elezi, I., Schmidhuber, J., Pelillo, M., Stadelmann, T.: DeepScores - A dataset for segmentation, detection and classification of tiny objects. In: 24th International Conference on Pattern Recognition (ICPR), Beijing, China, pp. 3704–3709 (2018)

    Google Scholar 

  27. Tuggener, L., Elezi, I., Schmidhuber, J., Stadelmann, T.: Deep watershed detector for music object recognition. In: Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, pp. 271–278 (2018)

    Google Scholar 

  28. van der Wel, E., Ullrich, K.: Optical music recognition with convolutional sequence-to-sequence models. In: Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIR), Suzhou, China, pp. 731–737 (2017)

    Google Scholar 

Download references

Acknowledgment

This work described in this paper has been supported by the Czech Science Foundation (grant no. 19-26934X), CELSA (project no. 19/018), and has been using data provided by the LINDAT/CLARIAH-CZ Research Infrastructure (https://lindat.cz), supported by the Ministry of Education, Youth and Sports of the Czech Republic (project no. LM2018101). The authors would like to thank Jan Hajič jr. for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mayer, J., Pecina, P. (2021). Synthesizing Training Data for Handwritten Music Recognition. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12823. Springer, Cham. https://doi.org/10.1007/978-3-030-86334-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86334-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86333-3

  • Online ISBN: 978-3-030-86334-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics