[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Effects of Interactivity and Presentation on Review-Based Explanations for Recommendations

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2021 (INTERACT 2021)

Abstract

User reviews have become an important source for recommending and explaining products or services. Particularly, providing explanations based on user reviews may improve users’ perception of a recommender system (RS). However, little is known about how review-based explanations can be effectively and efficiently presented to users of RS. We investigate the potential of interactive explanations in review-based RS in the domain of hotels, and propose an explanation scheme inspired by dialogue models and formal argument structures. Additionally, we also address the combined effect of interactivity and different presentation styles (i.e. using only text, a bar chart or a table), as well as the influence that different user characteristics might have on users’ perception of the system and its explanations. To such effect, we implemented a review-based RS using a matrix factorization explanatory method, and conducted a user study. Our results show that providing more interactive explanations in review-based RS has a significant positive influence on the perception of explanation quality, effectiveness and trust in the system by users, and that user characteristics such as rational decision-making style and social awareness also have a significant influence on this perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdul, A., Vermeulen, J., Wang, D., Lim, B.Y., Kankanhalli, M.: Trends and trajectories for explainable, accountable and intelligible systems: an HCI research agenda. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems - CHI 2018, p. 1–18 (2018)

    Google Scholar 

  2. Arioua, A., Croitoru, M.: Formalizing explanatory dialogues. In: Beierle, C., Dekhtyar, A. (eds.) SUM 2015. LNCS (LNAI), vol. 9310, pp. 282–297. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23540-0_19

    Chapter  Google Scholar 

  3. Bader, R., Woerndl, W., Karitnig, A., Leitner, G.: Designing an explanation interface for proactive recommendations in automotive scenarios. In: Ardissono, L., Kuflik, T. (eds.) UMAP 2011. LNCS, vol. 7138, pp. 92–104. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28509-7_10

    Chapter  Google Scholar 

  4. Bauman, K., Liu, B., Tuzhilin, A.: Aspect based recommendations: recommending items with the most valuable aspects based on user reviews. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 717–725 (2017)

    Google Scholar 

  5. Bentahar, J., Moulin, B., Belanger, M.: A taxonomy of argumentation models used for knowledge representation. Artif. Intell. Rev. 33(3), 211–259 (2010)

    Article  Google Scholar 

  6. Berkovsky, S., Taib, R., Conway, D.: How to recommend?: user trust factors in movie recommender systems. In: Proceedings of the 22nd International Conference on Intelligent User Interfaces, pp. 287–300 (2017)

    Google Scholar 

  7. Blair, J.A.: The possibility and actuality of visual arguments. In: Tindale, C. (eds.) Groundwork in the Theory of Argumentation, vol. 21, pp. 205–223 (2012)

    Google Scholar 

  8. Carenini, G., Cheung, J.C.K., Pauls, A.: Multi document summarization of evaluative text. Comput. Intell. 29, 545–574 (2013)

    Article  MathSciNet  Google Scholar 

  9. Carenini, G., Moore, J.D.: Generating and evaluating evaluative arguments. Artif. Intell. 170, 925–952 (2006)

    Article  Google Scholar 

  10. Casel: 2013 casel guide: Effective social and emotional learning programs - preschool and elementary school edition, collaborative for academic social and emotional learning (2013)

    Google Scholar 

  11. Chen, C., Zhang, M., Liu, Y., Ma., S.: Neural attentional rating regression with review-level explanations. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, pp. 1583–1592. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

  12. Chen, L., Pu, P.: Critiquing-based recommenders: survey and emerging trends 22(1–2), 3085–3094 (2014)

    Google Scholar 

  13. Cheng, H.F., et al.: Explaining decision-making algorithms through UI: strategies to help non-expert stakeholders. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2019)

    Google Scholar 

  14. Costa, F., Ouyang, S., Dolog, P., Lawlor, A.: Automatic generation of natural language explanations. In: Proceedings of the 23rd International Conference on Intelligent User Interfaces Companion, pp. 57:1–57:2 (2018)

    Google Scholar 

  15. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2019)

  16. Dong, R., O’Mahony, M.P., Smyth, B.: Further experiments in opinionated product recommendation. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS (LNAI), vol. 8765, pp. 110–124. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11209-1_9

    Chapter  Google Scholar 

  17. Donkers, T., Kleemann, T., Ziegler, J.: Explaining recommendations by means of aspect-based transparent memories. In: Proceedings of the 25th International Conference on Intelligent User Interfaces, pp. 166–176 (2020)

    Google Scholar 

  18. Donkers, T., Ziegler, J.: Leveraging arguments in user reviews for generating and explaining recommendations. Datenbank-Spektrum 20(2), 181–187 (2020)

    Article  Google Scholar 

  19. Driver, M.J., Brousseau, K.E., Hunsaker, P.L.: The dynamic decision maker (1990)

    Google Scholar 

  20. Farkas, D.K., Farkas, J.B.: Guidelines for designing web navigation. Tech. Commun. 47(3), 341–358 (2000)

    Google Scholar 

  21. Faul, F., Erdfelder, E., Lang, A.G., Buchner, A.: G*power 3: a flexible statistical power analysis for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007)

    Article  Google Scholar 

  22. Friedrich, G., Zanker, M.: A taxonomy for generating explanations in recommender systems. AI Mag. 32(3), 90–98 (2011)

    Google Scholar 

  23. Habernal, I., Gurevych, I.: Argumentation mining in user-generated web discourse. Comput. Linguist. 43(1), 125–179 (2017)

    Article  MathSciNet  Google Scholar 

  24. Hamilton, K., Shih, S.I., Mohammed, S.: The development and validation of the rational and intuitive decision styles scale. J. Pers. Assess. 98(5), 523–535 (2016)

    Article  Google Scholar 

  25. Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, pp. 241–250. ACM (2000)

    Google Scholar 

  26. Hernandez-Bocanegra, D.C., Donkers, T., Ziegler, J.: Effects of argumentative explanation types on the perception of review-based recommendations. In: Adaptation and Personalization (UMAP 2020 Adjunct) (2020)

    Google Scholar 

  27. Hilton, D.J.: Conversational processes and causal explanation. Physcol. Bull. 107(1), 65–81 (1990)

    Google Scholar 

  28. Kirby, J.R., Moore, P.J., Schofield, N.J.: Verbal and visual learning styles. Contemp. Educ. Psychol. 12(2), 169–184 (1988)

    Article  Google Scholar 

  29. Klein, L.: Evaluating the potential of interactive media through a new lens: search versus experience goods. J. Bus. Res. 41, 195–203 (1998)

    Article  Google Scholar 

  30. Knijnenburg, B.P., Willemsen, M.C., Gantner, Z., Soncu, H., Newell, C.: Explaining the user experience of recommender systems. In: User Modeling and User-Adapted Interaction, pp. 441–504 (2012)

    Google Scholar 

  31. Kouki, P., Schaffer, J., Pujara, J., O’Donovan, J., Getoor, L.: Personalized explanations for hybrid recommender systems. In: Proceedings of 24th International Conference on Intelligent User Interfaces (IUI 19), pp. 379–390. ACM (2019)

    Google Scholar 

  32. Krause, J., Perer, A., Ng, K.: Interacting with predictions: visual inspection of black-box machine learning models. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 5686–5697 (2016)

    Google Scholar 

  33. Lamche, B., Adigüzel, U., Wörndl, W.: Interactive explanations in mobile shopping recommender systems. In: Proceedings of the 4th International Workshop on Personalization Approaches in Learning Environments (PALE 2014), held in conjunction with the 22nd International Conference on User Modeling, Adaptation, and Personalization (UMAP 2014), pp. 92–104 (2012)

    Google Scholar 

  34. Lipton, P.: Contrastive explanation. Royal Inst. Philos. Suppl. 27, 247–266 (1990)

    Article  Google Scholar 

  35. Liu, Y., Shrum, L.J.: What is interactivity and is it always such a good thing? implications of definition, person, and situation for the influence of interactivity on advertising effectiveness. J. Advert. 31(4), 53–64 (2002)

    Article  Google Scholar 

  36. Loepp, B., Herrmanny, K., Ziegler, J.: Blended recommending: integrating interactive information filtering and algorithmic recommender techniques. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems - CHI 2015, pp. 975–984 (2015)

    Google Scholar 

  37. Loepp, B., Hussein, T., Ziegler, J.: Choice-based preference elicitation for collaborative filtering recommender systems. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems - CHI 2014, pp. 3085–3094 (2014)

    Google Scholar 

  38. Madumal, P., Miller, T., Sonenberg, L., Vetere, F.: A grounded interaction protocol for explainable artificial intelligence. In: Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2019, pp. 1–9 (2019)

    Google Scholar 

  39. McKnight, D.H., Choudhury, V., Kacmar, C.: Developing and validating trust measures for e-commerce: an integrative typology. Inf. Syst. Res. 13, 334–359 (2002)

    Article  Google Scholar 

  40. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2018)

    Article  MathSciNet  Google Scholar 

  41. Muhammad, K.I., Lawlor, A., Smyth, B.: A live-user study of opinionated explanations for recommender systems. In: Intelligent User Interfaces (IUI 2016), vol. 2, pp. 256–260 (2016)

    Google Scholar 

  42. Nelson, P.J.: Consumer Information and Advertising. In: Galatin, M., Leiter, R.D. (eds.) Economics of Information. Social Dimensions of Economics, vol. 3. Springer, Dordrecht (1981). https://doi.org/10.1007/978-94-009-8168-3_5

  43. Nelson, P.: Information and consumer behavior. J. Polit. Econ. 78(2), 311–329 (1970)

    Article  Google Scholar 

  44. Nunes, I., Jannach, D.: A systematic review and taxonomy of explanations in decision support and recommender systems. User Model User Adap. 27, 393–444 (2017)

    Article  Google Scholar 

  45. Perugini, M., Gallucci, M., Costantini, G.: A practical primer to power analysis for simple experimental designs. Int. Rev. Soc. Psychol. 31(1)(20), 1–23 (2018). https://doi.org/10.5334/irsp.181

    Article  Google Scholar 

  46. Pu, P., Chen, L., Hu, R.: A user-centric evaluation framework for recommender systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems - RecSys 2011, pp. 157–164 (2011)

    Google Scholar 

  47. Rago, A., Cocarascu, O., Bechlivanidis, C., Toni, F.: Argumentation as a framework for interactive explanations for recommendations. In: Proceedings of the Seventeenth International Conference on Principles of Knowledge Representation and Reasoning, pp. 805–815 (2020)

    Google Scholar 

  48. Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: Proceedings of SIGIR 2002, pp. 253–260 (2002)

    Google Scholar 

  49. Schnotz, W.: Integrated model of text and picture comprehension. In: The Cambridge Handbook of Multimedia Learning, 2nd ed., pp. 72–103 (2014)

    Google Scholar 

  50. Sniezek, J.A., Buckley, T.: Cueing and cognitive conflict in judge advisor decision making. Organ. Behav. Hum. Decis. Process. 62(2), 159–174 (1995)

    Article  Google Scholar 

  51. Sokol, K., Flach, P.: LIMEtree: interactively customisable explanations based on local surrogate multi-output regression trees. arXiv preprint arXiv:2005.01427 (2020)

  52. Sokol, K., Flach, P.: One explanation does not fit all: the promise of interactive explanations for machine learning transparency 34(2), 235–250 (2020)

    Google Scholar 

  53. Song, J.H., Zinkhan, G.M.: Determinants of perceived web site interactivity. J. Mark. 72(2), 99–113 (2008)

    Article  Google Scholar 

  54. Steuer, J.: Defining virtual reality: dimensions determining telepresence. J. Commun. 42(4), 73–93 (1992)

    Article  Google Scholar 

  55. Tintarev, N.: Explanations of recommendations. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys 2007, pp. 203–206 (2007)

    Google Scholar 

  56. Tintarev, N., Masthoff, J.: Evaluating the effectiveness of explanations for recommender systems. User Model. User Adapt. Interact. 22, 399–439 (2012)

    Article  Google Scholar 

  57. Toulmin, S.E.: The uses of argument (1958)

    Google Scholar 

  58. Vig, J., Sen, S., Riedl, J.: Tagsplanations: explaining recommendations using tags. In: Proceedings of the 14th International Conference on Intelligent User Interfaces, pp. 47–56. ACM (2009)

    Google Scholar 

  59. Wachsmuth, H., Trenkmann, M., Stein, B., Engels, G., Palakarska, T.: A review corpus for argumentation analysis. In: 15th International Conference on Intelligent Text Processing and Computational Linguistics, pp. 115–127 (2014)

    Google Scholar 

  60. Walton, D.: The place of dialogue theory in logic. Comput. Sci. Commun. Stud. 123, 327–346 (2000)

    MATH  Google Scholar 

  61. Walton, D.: A new dialectical theory of explanation. Philos. Explor. 7(1), 71–89 (2004)

    Article  Google Scholar 

  62. Walton, D.: A dialogue system specification for explanation. Synthese 182(3), 349–374 (2011)

    Article  Google Scholar 

  63. Walton, D., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning. State University of New York Press, New York (1995)

    Google Scholar 

  64. Wang, N., Wang, H., Jia, Y., Yin, Y.: Explainable recommendation via multi-task learning in opinionated text data. In: Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2018, pp. 165–174 (2018)

    Google Scholar 

  65. Weld, D.S., Bansal, G.: The challenge of crafting intelligible intelligence. Commun. ACM 62(6), 70–79 (2019)

    Article  Google Scholar 

  66. Wu, Y., Ester, M.: Flame: a probabilistic model combining aspect based opinion mining and collaborative filtering. In: Eighth ACM International Conference on Web Search and Data Mining, pp. 153–162. ACM (2015)

    Google Scholar 

  67. Xiao, B., Benbasat, I.: Ecommerce product recommendation agents: use, characteristics, and impact. MIS Q. 31(1), 137–209 (2007)

    Article  Google Scholar 

  68. Yaniv, I., Milyavsky, M.: Using advice from multiple sources to revise and improve judgments. Organ. Behav. Hum. Decis. Process. 103, 104–120 (2007)

    Article  Google Scholar 

  69. Zanker, M., Schoberegger, M.: An empirical study on the persuasiveness of fact-based explanations for recommender systems. In: Joint Workshop on Interfaces and Human Decision Making in Recommender Systems, pp. 33–36 (2014)

    Google Scholar 

  70. Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., Ma., S.: Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 83–92 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the German Research Foundation (DFG) under grant No. GRK 2167, Research Training Group “User-Centred Social Media”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana C. Hernandez-Bocanegra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hernandez-Bocanegra, D.C., Ziegler, J. (2021). Effects of Interactivity and Presentation on Review-Based Explanations for Recommendations. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12933. Springer, Cham. https://doi.org/10.1007/978-3-030-85616-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85616-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85615-1

  • Online ISBN: 978-3-030-85616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics