[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Malware Variants Detection Based on Feature Fusion

  • Conference paper
  • First Online:
Cyberspace Safety and Security (CSS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12653))

Included in the following conference series:

Abstract

Being able to detect malware variants is an important problem due to the rapid development and the security threats of new malware variations. Machine learning methods are currently one of the most popular malware variant detection methods, however, most of these methods only use single type of features (e.g. opcode) and shallow learning algorithms (e.g. SVM), which also makes these methods have demonstrated poor detection accuracy and low detection speeds. In this paper, we propose a method that combines multiple features of malware with deep learning methods to optimize the detection of malware variants. To implement the proposed method, we use Deep Convolutional Neural Network (DCNN) and Information Gain (IG) to extract effective features from the grayscale map and disassembly file mapped from the malware, respectively. Then we construct a fusion feature space by combining the different types of extracted features and use it to train a Multilayer Perceptron (MLP) to obtain results. The experimental results demonstrated that our method achieved good accuracy as compared with other common malware detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. China network security report in 2019. https://it.rising.com.cn/dongtai/19692.html

  2. You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: 2010 International Conferences on Broadband, Wireless Computing, Communication and Applications, pp. 297–300. Communication and Applications, Fukuoka (2010)

    Google Scholar 

  3. Ren, Z.J., Chen, G.: Application of entropy visualization method in malware classification. Comput. Eng. 43(9), 167–171 (2017)

    Google Scholar 

  4. Yi, H.D., Xu, Y.N.: Malicious code detection based on random forest. Cyberspace Secur. 9(2), 70–75 (2018)

    Google Scholar 

  5. Ye, Y., Li, T.: A survey on malware detection using data mining techniques. ACM Comput. Surv. 50(3), 1–40 (2017)

    Article  Google Scholar 

  6. Wang T., Xu N.: Malware variants detection based on opcode image recognition in small training set. In: 2017 IEEE 2nd International Conference on Cloud Computing, pp. 328–332, Chengdu (2017)

    Google Scholar 

  7. Peng, W., Li, F., Zou, X.: Behavioral malware detection in delay tolerant networks. IEEE Trans. Parallel Distrib. Syst. 25(1), 53–63 (2014)

    Article  Google Scholar 

  8. Microsoft malware classification challenge (big 2015). https://www.kaggle.com/c/malw-are-classification

  9. Bo, W., Yan, Y.H.: Malware classification method based on static multiple-feature fusion. Chin. J. Netw. Inf. Secur. 3(11), 68–76 (2017)

    Google Scholar 

  10. Bazrafshan, Z., Hashemi, H., Fard, S.M.: A survey on heuristic malware detection techniques. In: The 5th Conference on Information and Knowledge Technology, pp. 113–120, Shiraz (2013)

    Google Scholar 

  11. Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C.: Deep learning for classification of malware system call sequences. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS (LNAI), vol. 9992, pp. 137–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50127-7_11

    Chapter  Google Scholar 

  12. Goodall, J.R., Radwan, H., Halseth, L.: Visual analysis of code security. In: Proceedings of the 7th International Symposium on Visualization for Cyber Security, pp. 46–51. ACM, New York (2010)

    Google Scholar 

  13. Nataraj, L., Karthikeyan, S., Jacob, G.: Malware images: visualization and automatic classification. In: Proceedings of the 8th International Symposium on Visualization for Cyber Security, pp. 1–7. ACM, New York (2011)

    Google Scholar 

  14. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vision 42(3), 145–175 (2001)

    Article  Google Scholar 

  15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. Boston (2015)

    Google Scholar 

  16. Cui, Z., Xue, F., Cai, X.: Detection of malicious code variants based on deep learning. IEEE Trans. Industr. Inf. 14(7), 3187–3196 (2018)

    Article  Google Scholar 

  17. Swetha, M.S., Sarraf, G.: Spam email and malware elimination employing various classification techniques. In: 2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), pp. 140–145. IEEE (2019)

    Google Scholar 

  18. Han, H., Lim, S.J., Sun, K.: Enhanced android malware detection: an SVM-based machine learning approach. In: 2020 IEEE International Conference on Big Data and Smart Computing, pp. 75–81. IEEE (2020)

    Google Scholar 

  19. Priyadarshan, P., Sarangi, P., Rath, A.: Machine Learning based improved malware detection schemes. In: 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 925–931. IEEE (2021)

    Google Scholar 

  20. Kawai, M., Ota, K., Dong, M.: Improved malgan: avoiding malware detector by cleanware features. In: 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 040–045. IEEE (2019)

    Google Scholar 

  21. Khan, R.U., Zhang, X., Kumar, R.: Analysis of ResNet and GoogleNet models for malware detection. J. Comput. Virol. Hacking Tech. 15(1), 29–37 (2018). https://doi.org/10.1007/s11416-018-0324-z

    Article  Google Scholar 

  22. Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 470–478. ACM, New York (2004)

    Google Scholar 

  23. Khoshkbarforoushha, A., Khosravian, A., Ranjan, R.: Elasticity management of streaming data analytics flows on clouds. J. Comput. Syst. Sci. 89, 24–40 (2017)

    Article  MathSciNet  Google Scholar 

  24. Roundy, K., Miller, B.P.: Binary-code obfuscations in prevalent packer tools. ACM Comput. Surv. 46(1), 1–32 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support by the National Natural Science Foundation of China (No. 66162019); National Natural Science Foundation of China Enterprise Innovation and Development Joint Fund (No. U19B2044).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mai, J., Cao, C., Wu, Q. (2021). Malware Variants Detection Based on Feature Fusion. In: Cheng, J., Tang, X., Liu, X. (eds) Cyberspace Safety and Security. CSS 2020. Lecture Notes in Computer Science(), vol 12653. Springer, Cham. https://doi.org/10.1007/978-3-030-73671-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73671-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73670-5

  • Online ISBN: 978-3-030-73671-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics